
Engineering Geology 297 (2022) 106485

Available online 8 December 2021
0013-7952/© 2021 Published by Elsevier B.V.

Site-scale liquefaction potential analysis using a sectional random 
field model 

Amir Gholampour * 

Department of Civil Engineering, Apadana Institute of Higher Education, Shiraz, Iran   

A R T I C L E  I N F O   

Keywords: 
Liquefaction potential 
Conditional random field 
Site-scale analysis 
Cone penetration test 

A B S T R A C T   

This paper presents a new random field modeling to assess the site-scale spatial variability of soil properties 
applied in liquefaction mapping. In this procedure, the initial random fields are primarily generated, based on in- 
situ measured data. These initial fields are considered as the virtual known values to construct interior random 
fields, section-by-section and around a central axis. Assembling these sections results in a three-dimensional 
random field model. Through this approach, more accurate vertical semivariogram models can be available, 
in addition to a higher number of measured data involved in the generation of random fields. Based on a 
verification procedure, computational cost reduction and a more appropriate prediction of the layering char
acteristics are the two most important beneficial points of changing the modeling strategy from planar to 
sectional. The proposed approach is implemented in a case study in Oceano, California and the spatial distri
bution of liquefaction probability is estimated. It is concluded that the sectional random field can efficiently 
locate the liquefiable zone through the soil volume, based on liquefaction evidence. In addition to performing the 
liquefaction severity assessment, it is also illustrated that the hazard assessments based on liquefaction severity 
alone cannot provide the comprehensive prediction of liquefaction potential and may lead to unconservative 
engineering judgments.   

1. Introduction 

One of the most destructive causes of ground failure during earth
quakes is the liquefaction phenomenon, which results in a sudden loss of 
strength and stiffness in saturated loose sandy deposits. A wide range of 
damages has been reported regarding the matter of regional and site- 
scale liquefaction (Youd and Idriss, 2001; Lee et al., 2004; Caputo and 
Papathanassiou, 2012; Lin et al., 2021). 

Several attempts have been made to predict liquefaction potential 
over the last decades, using empirical correlations. These correlations 
have been commonly developed based on soil properties measured by 
in-situ tests such as the Cone Penetration Test (CPT) (Robertson and 
Wride, 1998; Geyin and Maurer, 2021), standard penetration test 
(Tunusluoglu and Karaca, 2018), and the shear wave velocity test 
(Zhang et al., 2021). 

Due to exploration cost, the soil properties utilized in assessing 
liquefaction potential (e.g., the tip resistance and the side friction from 
CPT measurements) can only be measured in a limited portion of the 
total soil volume, where the test is performed. Hence, the corresponding 

values remain unknown at the other soil spots that are apart from the 
test locations. This fact indicates that there are indeed uncertainties 
involved in soil liquefaction identification, and the problem must be 
treated in the probabilistic framework (Juang et al., 1999). 

The nature of uncertainty is generally related to the inherent spatial 
variability of soil properties. Probabilistic studies have demonstrated 
that ignoring spatial variability may lead to an unconservative estima
tion of soil liquefaction (Na et al., 2009; Vivek and Raychowdhury, 
2014). In an effort to address the soil spatial variability, the random field 
theory has been developed for geostatistical practice. Numerous re
searches have focused on applying two-dimensional (2D) and three- 
dimensional (3D) random field-based approaches in liquefaction po
tential evaluation in recent decades (Dawson and Baise, 2005; Popescu 
et al., 2005; Lenz and Baise, 2007; Bong and Stuedlein, 2018; Shen et al., 
2019; Zhao et al., 2021). 

For instance, Wang and Chen (2018) have exploited the CPT records 
to obtain the index of liquefaction potential at soundings locations. Af
terward, these data have been applied as inputs to 2D surficial multi
scale random field modeling. This procedure, (i.e., the averaged index 
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approach) is simple and computationally efficient. However, the com
plex subsurface heterogeneity associated with soil properties’ spatial 
variability has not been addressed in this approach. 

Greenfield and Grant (2020) have applied Gaussian process models 
into liquefaction evaluating procedures in a more comprehensive anal
ysis. In this regard, 3D estimates of the liquefaction probability have 
been produced for a case study. Although the 3D random field simula
tion of soil properties provides a full-scale correlation analysis, it 
significantly increases the computational cost. Additionally, it may not 
always guarantee a more accurate result in liquefaction mapping (Wang 
et al., 2017b). The full 3D random fields can be time-consuming and 
usually challenging to carry out technically. 

Therefore, several researchers have preferred to utilize the extended 
2D random field, termed the Local Soil Property (LSP) approach, for 
modeling the spatially correlated soil properties (Baker and Faber, 2008; 
Wang et al., 2017b; Juang et al., 2018). In this approach, random fields 
are generated in a layer-by-layer sequence, and the planar correlation 
structure is assessed at each level for soil properties. Assembling planar 
random fields results in a volumetric simulation model (Wang et al., 
2017b). In the regional-scale analysis (i.e., over hundreds of square ki
lometers), where usually sampled data are abundantly available, this 
approach provides an acceptable surficial liquefaction potential char
acterization (Uzielli et al., 2005; Liu and Chen, 2006). 

On the other hand, in the site-scale analysis (e.g., infrastructures 
such as buildings, bridge foundations, and soil slopes), fewer explora
tions are usually carried out, and insufficient information is available 
about the soil’s heterogeneous structure. The measured data is usually 
obtained in one direction that is perpendicular to the ground surface. 
The absence of sufficient known data may increase the planar simulation 
variance; accordingly, it may decrease the random fields’ efficiency. 
Furthermore, the spatial correlation of soil properties in the planar 
method (i.e., LSP approach) is merely modeled in the horizontal direc
tion (i.e., perpendicular to the sedimentation direction), which repre
sents a significantly higher scale of variation versus the vertical 
direction. Thus, an efficient method is necessitated that can be applied 
for site-scale liquefaction prediction and to resolve the reviewed avail
able deficiencies. 

The primary scope of the present paper is to introduce a procedure 
for constructing a 3D random field in a section-by-section sequence for 
CPT parameters. Through this approach, more accurate vertical semi
variogram models will be available, in addition to a higher number of 
measured data involved in the generation of random fields, thanks to the 
relatively high sampling frequency of the CPTs in the vertical direction. 
This type of modeling can be advantageous for the examination of the 
site-scale soil liquefaction problems that are always accompanied by 
limitations of data measurement. Another objective of this research is to 
identify the liquefiable zone throughout the model volume, based on the 
spatial distribution of Probability of Liquefaction (PL). Furthermore, it 
has been aimed to implement the proposed procedure in a site-scale 
liquefaction potential characterization for a case study. 

For realizing such purposes, a computer program is designed in 
MATLAB to conduct the required numerical calculations. In the pro
posed framework, at first, the initial section’s random fields are gener
ated, based on measured CPT data. To exploit the most number of CPT 
soundings at each initial random field, a central CPT is selected, which is 
shared in all sections. Subsequently, initial sections that are considered 
the virtual known data are utilized to construct interior random fields, 
pivoted around the central CPT axis. Assembling these random field 
sections results in a cylindrical shape model for soil properties. After 
describing the steps in the proposed approach, the basis of the model is 
verified and the advantages are proved. The proposed procedure is 
implemented for a case study in Oceano, California. Based on simula
tions of 3D random fields for CPT parameters, the spatial distribution of 
the PL is predicted and applied in the liquefaction severity assessment. 
Finally, the results are compared with conventional liquefaction po
tential indicators. 

2. Evaluation of liquefaction potential 

In this paper, the correlation-based “simplified procedure” (Seed and 
Idriss, 1971; Youd and Idriss, 2001) is utilized to investigate the lique
faction occurrence. This procedure is straightforward and provides a 
process for avoiding undisturbed sampling. Typically, the factor of 
safety against liquefaction (FS) at any specific location is calculated by: 

FS = CRR/CSR (1)  

where CRR and CSR respectively represent, the cyclic resistance and 
cyclic stress ratio. Details of CSR and CRR calculation are summarized in 
Appendix A or can be found in the study of Juang et al. (2003). In the 
present paper, the measured tip resistance (qc) and the side friction (f) 
are considered spatially cross-correlated variables in the probabilistic 
analysis. 

Another influential soil parameter in the stochastic analysis of 
liquefaction is the unit weight which is applied to calculate overburden 
stresses. In this regard, an attempt is made to use merely CPT data 
without any borehole sampling. Hence, the total unit weight of soil (γ) is 
approximated according to the CPT-based correlation equation, pro
posed by Robertson and Cabal (2010) as follows: 

γ/γw = 0.27[log(f/qc) ] + 0.36[log(qc/pa) ] + 1.236 (2)  

where γw represents the unit weight of water and pa indicates the at
mospheric pressure. Through this approach, the spatial variability of 
unit weight is also included in the prediction of liquefaction occurrence. 

The severity of liquefaction destruction can be quantified for an 
entire CPT sounding using the well-known Liquefaction Potential Index 
(LPI), based on the original study by Iwasaki (1978). This index property 
which is considered an estimate of liquefaction-related surface damage 
can be calculated in a discretized form as follows: 

LPI =
∑N

i=1
ωiFLiHi (3)  

where N and Hi are the number and the thickness of soil layers, 
respectively. Moreover, FL is defined using the following equation: 

FL =

⎧
⎨

⎩

0 FS ≥ 1.2
1 − FS FS ≤ 0.95
2 × 106e− 18.42FS 0.95 ≤ FS ≤ 1.2

(4) 

In this study, only the first 10 m depth of CPT data is considered, 
hence the modified depth weighting factor is used as follows (Özocak 
and Sert, 2010): 

ω = 20 − 2z (5) 

In the probabilistic analysis, the FL in Eq. (3) can be replaced with the 
PL and the LPI is re-named as Liquefaction Severity Index (LSI). The 
liquefaction indices (i.e., LPI and LSI) are widely applied for prediction 
of the surficial liquefaction manifestations; however, interpreting the 
results must be regarded with particular concerns (Van Ballegooy et al., 
2015). Consequently, calibration in order to determine the liquefaction 
severity has been mostly attended by related researchers (Chung and 
David Rogers, 2017; Kim et al., 2020). It must be noticed that a more 
diverse liquefaction severity classification is derived with the aim of 
providing the liquefaction susceptibility maps by defining the LSI 
(Sonmez and Gokceoglu, 2005). 

3. Geostatistical modeling of CPT records 

Geostatistical approaches have been applied for many years in 
geotechnical engineering to assess the spatial variability and the corre
lation structure in CPT parameters (Jaksa and Fenton, 2000; Liu and 
Chen, 2010; Wang et al., 2017a). In a typical procedure, the conditional 
random field is realized through geostatistical simulation to provide the 
most accurate estimate of CPT records between the measured data over 
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the entire domain. In this paper, the cross-correlation between the CPT 
parameters (i.e., tip resistance and side friction) is included as they are 
highly dependent. 

To cover a vast field of application, it is assumed that the mean of the 
CPT data variations is not a constant value; moreover, the variance in
creases over an increasingly large region. Therefore, the Sequential 
Gaussian Simulation (SGS) is exploited along with the ordinary type of 
Cokriging to generate intrinsically stationary random fields of cross- 
correlation variables. 

In this regard, for each realization, a random path is planned, which 
crosses all the points at the centroid of elements in the predefined mesh. 
After characterizing the spatial correlation of random variables by the 
semivariograms, a search area is defined for each point to identify 
adjacent known data. In the next step, the mean and variance of the 
Conditional Cumulative Distribution Function (CCDF) are calculated 
through the ordinary Cokriging technique. Afterward, one of the CCDF 
values is picked and added to the initial known data set. This value is 
assigned to the entire area of the respective element. The procedure is 
repeated until the random variables for all points are simulated. More 
details on geostatistical tools, especially the SGS methodology, are 
addressed in Rouhani et al. (1996), and Webster and Oliver (2007). The 
geotechnical applications of the SGS can be found in Basarir et al. (2010) 
and Gholampour and Johari (2019a, 2019b). Details of performing the 
anisotropic semivariogram analysis are presented in Appendix B. 

4. Constructing the sectional random model 

In the local or site-scale liquefaction assessment (e.g., near a critical 
infrastructure or a particular building of interest), the geotechnical 
exploration programs are usually encountered with limitations and a 
small amount of measured data is available. Hence, one of the primary 
challenges in this scale of analysis is constructing a random field model 
that maximally exploits the limited measured data to improve estima
tions’ accuracy. 

In the present study, the random fields of soil properties are deter
mined at sections pivoted around a central axis, perpendicular to the 
ground surface. Assembling these 2D random fields results in generating 
a 3D model for soil properties. By using the Sectional Random Field 
(SRF) instead of the planar field, additional measured data can be 
involved in the generation of random fields, based on the relatively high 
sampling frequency of the CPTs in the vertical direction. 

In the SRF, the spatial correlation structure is determined in two 
main steps; in the first step, an anisotropic semivariogram analysis is 
performed to estimate the initial sections’ 2D random field values, by 
taking the vertical and horizontal correlation into account. The second 
step is conducting a one-dimensional (1D) rotating semivariogram 
analysis using angular distances to produce random fields at interior 
sections. In what follows, the two mentioned steps are described in 
detail. 

4.1. Random field at initial sections 

Based on the proposed approach, the final 3D model is considered a 
cylinder with a specific height and radius, which is involved all locations 
with CPT sounding (S-1 to S-5 in Fig. 1). As demonstrated in Fig. 1, the 
circular cross section of the cylindrical model is selected such that the S- 
1 is the central axis, and the radius, ‘R,’ is quite large to include other 
CPT sounding locations. Accordingly, each initial section can be appro
priately defined such that it contains at least two CPT soundings, where 
one of them is the central (i.e., sections 1–2 to 1–5 in Fig. 1). Utilizing the 
maximum number of CPT records at each initial section is the main 
reason for applying this modeling type. Hence, if the depths of the CPT 
soundings are different, the bottom of initial section is defined based on 
the deepest CPT sounding to include all measured data. It is also 
essential to attentively select a section as an origin (i.e., section 1) and a 
rotating direction for the analysis (i.e., anticlockwise rotation) to avoid 
modeling errors. 

In the next step, the conditional random fields at the initial sections 
are generated using the measured data from related CPT soundings. To 
achieve this aim, the semivariogram analysis is conducted vertically and 
horizontally. In the vertical direction, the semivariogram model can be 
accurately fitted based on frequent experimental data points. However, 
in the horizontal direction, the measured data is so limited that it can 
only be determined one experimental point for a section with two CPT 
soundings, which is not sufficient for semivariogram model fitting. 

To bypass this problem, two primary assumptions are made; first, the 
geometry type of anisotropy is considered in the analysis, therefore, the 
nugget variance (C0) and the sill (C) are the same in both directions and 
the anisotropy is only considered for the range parameter at the outset. 
In the second assumption, for each realization of the initial sections’ 
random field, a value for the degree of anisotropy (ζ) is selected as a 
random variable to approximate the early value of the horizontal range 

Fig. 1. Details on selecting model geometry and initial sections.  
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parameter as follows: 

Ah = ζAv (6)  

where Ah and Av are the range parameters in the horizontal and vertical 
direction, respectively. The mean and standard deviation for ζ is selected 
based on the study by Cami et al. (2020). In this approach, the initial 
parameters’ values of the horizontal semivariogram models (i.e. Ah, C0, 
C) are extracted from a highly accurate vertical model. Then, the pa
rameters’ values are finalized based on model fitting, using any existing 
number of horizontal experimental data (e.g., one data point for initial 
section with two CPT soundings). More details on this subject are given 
for the case study in section 7. 

After performing the anisotropic semivariogram analysis, the con
ditional random fields at initial sections are generated through the SGS 
method, described in section 3. Furthermore, the example of mesh dis
cretization of initial sections is presented in Fig. 1. An additional section 
(i.e., section 1-3b) is individually considered at the same location with 
the identical values of the origin section (i.e., section 1-3a) to maintain 
the model’s values’ continuity. However, all elements of the last section 
(i.e., section 1-3b) represents a 360◦ angle with respect to the origin. 

4.2. Random field at interior sections 

After generating the conditional random fields at the initial sections, 
the existing angle between the first and the last initial section (i.e., θ1–5 
= 360◦ in Fig. 1) is divided by ‘n’ equal segments. The locations of 
required sections in the cylindrical model are determined by applying 
this division. In the present paper, these required random fields are 
called interior sections. They all have the same mesh as the initial sec
tions, and are located around the central axis. It is worth noting that “n” 
represents the number of interior sections. 

A particular semivariogram analysis is introduced based on angular 
distances and the rotational direction to build random fields at interior 
sections. Performing this analysis results in 1D semivariogram data. It 
means that the angular distance between pair values at “corresponding 
elements” of initial sections is utilized in semivariogram analysis. Hence, 
there will be only one value for the range parameter in the semivario
gram model, which is based on angular distances. 

In this study, the corresponding elements are defined in which they 
all have equal coordinates in their sections. The rotating semivariogram 
model is obtained by considering all sets of corresponding elements. 
This model merely describes the 1D spatial correlation of random vari
ables in the rotational direction through reasonable computational at
tempts. Furthermore, the random field values at interior sections are 
realized through the SGS approach, using the rotating semivariogram 
model. 

As depicted in Fig. 2, each element is spatially identified by its 

angular distance from the origin section. For instance, the angular dis
tance Lij for Eij (element i in section j) is defined using the following 
equation: 

Lij = ri.θj (7)  

where θj is the angle between section j and the origin section (i.e., sec
tion o). ri represents the horizontal vector distance of element i from the 
origin line (i.e., central CPT). In this regard, the angular distance, Lik for 
the element Eik is another example of this identification (see Fig. 2). The 
separated angular distance between elements Eik and Eij can be readily 
determined to perform the semivariogram analysis through Lik-Lij. In 
Fig. 2, the Eio, Eij, and Eik are the corresponding elements for vector 
distance ri. 

4.3. The proposed method process 

In this section, the practical implementation of the proposed model is 
described. The steps are schematically presented in detail in Fig. 3 and 
are as follows: 

Step (1) Selecting the central CPT sounding, the cylindrical model 
radius, and defining the initial sections; 

Step (2) Performing 2D anisotropic semivariogram analysis for each 
initial section, using the measured data from corresponding CPTs; 

Step (3) Generating the conditional random fields at initial sections; 
Step (4) Performing 1D rotating semivariogram analysis based on all 

sets of corresponding elements, using the initial sections as the virtual 
known values; 

Step (5) Generating the conditional random fields at interior sections 
based on a rotating semivariogram model and the virtual known data; 

Step (6) Assembling all interior sections data and construct the 3D 
random field. 

Based on the above steps, new conditional random fields for initial 
sections are generated in each realization of SRF and used as the virtual 
known data for subsequent random field realization of other interior 
sections. These steps provide a procedure for generating the SRF for the 
CPT records. After determining the random fields, the safety factor 
against liquefaction hazard is calculated by exploiting the described 
procedure in section 2. These steps are applied to the Monte-Carlo 
Simulation (MCS) to carry out the probabilistic analysis and determine 
the spatial distribution of the PL. The generation of SRF is numerously 
repeated for the probabilistic and spatial assessment of various quanti
ties in liquefaction potential analysis. 

The main advantages of the proposed procedure for SRF simulation 
compared to the mentioned methods in the literature are described in 
the following:  

(a) in the sectional modeling, additional measured data is included in 
the estimation of random fields, according to the fact that the 
direction of CPTs is vertical. This modeling strategy causes the 
soil properties random field to estimate more accurately. More
over, it is advantageous for examination of the site-scale soil 
liquefaction problems that are always accompanied by limita
tions of data measurement;  

(b) the spatial correlation of soil properties is particularly modeled in 
the vertical direction (i.e., parallel to the sedimentation direction 
which has a relatively smaller scale of variation). The accurate 
vertical semivariogram model provides an appropriate prediction 
of the layering characteristics within the soil volume;  

(c) the uncertainty in the horizontal correlation of soil properties is 
included in the semivariogram analysis, by using the degree of 
anisotropy as a random variable;  

(d) apart from the decrease in the computational cost of a random 
field generation with respect to the LSP approach, the proposed 
two-step semivariogram analysis (i.e., steps 2 and 4) is remark
ably simpler than the generation of 3D semivariogram modeling. 

Fig. 2. Rotating semivariogram analysis for corresponding elements based on 
angular distances. 
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Fig. 3. Flowchart of generating the proposed SRF.  
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5. Model verification 

A procedure for model verification is presented to evaluate SRF re
alization’s performance and assess the efficiency of the coded programs. 
It must be noted that the primary concern in this section of the paper is 
to verify the basis and prove the advantages of the model. Details on 
performing the SRF in a site-scale liquefaction problem are compre
hensively described in the next section as a case study. 

According to Chen et al. (2017) and Juang et al. (2018), a spatially 
correlated random field is unconditionally generated for an intended 
property of soil (e.g., normalized cone resistance, qc1N). In the present 
study, this random model is called the “target field,” which is considered 
a benchmark to validate the SRF realizations. Although a total of 100 
sampling points is usually required to reach an acceptable evaluation of 
the semivariograms in the geotechnical applications (Webster and 
Oliver, 2007), a virtual field testing plan with 29 CPT soundings is 
designed here. This number of virtual CPTs is adopted to assess the SRF 
performance under insufficient measured data which is common in site- 
scale modeling. There are no limitations in CPT soundings locations, and 
the field testing points can be in a uniform or radial pattern. To generate 
the conditional random fields, these synthetic CPT normalized cone 
resistance values are extracted from the target field at each virtual 
sounding location. Then, the values are considered as the input known 
data to implement in the SRF and the LSP approach. The accuracy of the 
results is assessed by the detailed target field. 

As can be observed in Fig. 4 (a), the unconditional random field 
model is in the form of a rectangular cube by the dimensions of 30 m ×
30 m × 8 m, and the corresponding individual mesh size is 1.25 m ×

1.25 m × 0.1 m. Therefore, the model is comprised of 46,080 elements. 
The discretization is selected to find a balance between the accuracy and 
the reasonable computational effort. It is assumed that normalized cone 
resistance follows a lognormal distribution. The mean and variance of 
the parameter are respectively 129.7 and 25, based on the study results 
of Firouzianbandpey et al. (2015). The spatial structure is specified to be 
isotropic in the horizontal direction with a 5.0 m correlation length. On 
the other hand, a spatial variability with 0.45 m correlation length is 
assumed for the vertical direction (Firouzianbandpey et al., 2015). The 
uniform layout of virtual testing locations is demonstrated in Fig. 4 (a), 
specified by white spots. Moreover, the procedure of selecting the initial 
sections is illustrated to include at least two CPT soundings. In Fig. 4 (a), 
section 1–1 and locations P1 to P4 are marked with black color to be used 
subsequently for model verification. 

A cylindrical model with a 15.0 m radius is selected to construct the 
SRF realizations. Based on the virtual CPT testing layout, 16 initial 
sections that are discretized through 1.25 m × 0.1 m elements (i.e., a 
total of 960 elements) are designed to construct a 2D random field. The 
element size in the vertical and horizontal direction for sections is 
identical to that used in the target field. Subsequently, the 3D sectional 
model is generated by 65 interior sections (i.e., n = 65) with a total 
number of 62,400 elements. In Fig. 4 (b), a typical realization of the 
proposed model is displayed. 

To compare the SRF with the LSP approach, other sets of random 
fields are generated in a layer-by-layer sequence, where the horizontal 
correlation is explicitly modeled only. In the LSP approach, random field 
simulations are performed for each soil layer with a thickness of 0.1 m, 
using the same planar mesh as the target field. Fig. 4 (c) shows a typical 

Fig. 4. Random field for normalized cone resistance.  
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realization of the LSP approach. In both Fig. 4 (b) and (c), section 1–1 
and locations P1 to P4 are also marked in order to be used for model 
verification and comparison. 

After constructing a random field realization through both ap
proaches, the computational efficiency of models performance is 
assessed. Because of the difference in geometric characteristics of the 
models, it is difficult to provide the exact same circumstances for 
comparing the SRF and LSP approaches. Nevertheless, the computa
tional time required for calculating the realization of a random field for 
the SRF and LSP approaches on a personal computer with Intel Core 
i5–7400 processor and 16 GB memory, are 9 mins and 14 mins, 
respectively. More computational effort in LSP approach may be related 
to the 80 times semivariogram analysis, equal to 80 layers, which are 
required in each realization. Despite the LSP approach, the semivario
gram analysis is only performed 17 times, equal to 16 initial sections 
plus 1 rotational analysis, in the SRF. This difference in computational 
time cost will be significant for probabilistic analysis where a large scale 
of random field simulations is needed (e.g., the different time between 
SRF and LSP reaches 3.47 days for 1000 simulations). 

The vertical and horizontal semivariograms for an initial section of 
the SRF model are demonstrated in Fig. 5 (a) and (b), respectively. In 
Fig. 5 (a), the model is fitted on sufficient experimental data points 
which are obtained based on the sectional modeling strategy proposed in 
this paper. An exponential model with a 0.4 m range parameter is uti
lized to fit the vertical experimental semivariogram data. The range 
parameter in the semivariogram model, which is analogous to the cor
relation length in the SRF, implies that the model can appropriately 
capture the target field’s vertical correlation (i.e., Y-direction). After 
determining the vertical semivariogram, as mentioned in section 4.1, the 
horizontal semivariogram is estimated based on initial parameters’ 
values extracted from Fig. 5 (a) and an existing experimental point. 
Therefore, a 4.1 m range parameter is obtained for the exponential 
model of horizontal semivariogram. 

The vertical and horizontal semivariograms for a layer (i.e., XZ 
plane) in the LSP approach are shown in Fig. 5 (c) and (d), respectively. 

As can be seen, the number of measured data points in each layer is 
equal to the number of soundings locations in the site plan. Since few 
explorations are usually carried out in site-scale problems, fitting the 
semivariogram model is specifically difficult in this situation. The 
absence of sufficient known data may decrease the semivariogram 
models’ efficiency. It is clear from the comparison in Fig. 5, changing the 
modeling strategy from planar to sectional results in additional 
measured data usage in the estimation of random fields and conse
quently, improve the random field’s accuracy. 

Another method to examine the model prediction ability is by 
determining the Volume Distribution (VD) of CPT normalized cone 
resistance throughout the region. This function indicates the occupied 
volume share of each random variable range in the model. This assess
ment is provided to check if the random field models can simulate the 
data distribution of the target field. Fig. 6 demonstrates the VD of a 
typical SRF and LSP realization, compared with the target field. A cy
lindrical region corresponding to the SRF of the LSP and target field is 
considered in the VD evaluation to provide a reasonable comparison. 
The results indicate that in both approaches, the volumetric distribution 
of normalized cone resistance is satisfactorily predicted for each range. 
In the LPI approach, the VD of the target field is predicted within an 
average of 36% difference. However, the average difference is reduced 
to 17% for the SRF estimates. 

To provide a comprehensive validation and quantitatively assess the 
model predictive ability, 1000 simulations of qc1N random fields are 
performed through the SRF and LSP approaches. The expected value of 
simulations is used at each element in the subsequent analysis. Four 
locations marked in Fig. 4 (a) to (c) (i.e., P1, P2, P3, and P4) are imple
mented to assess the estimated profiles of qc1N which are shown in Fig. 7. 
For each location, the profile of the target field is plotted and compared 
with averaged values of SRF and LSP simulations. As can be seen in 
Fig. 7, the profiles of the LSP approach deviate from the target profile at 
specific depths (e.g., depth of 3 to 4 m at P1, P3, and P4). These 
considerable deviations in the LSP profiles indicate information loss and 
a reduction in the accuracy of prediction ability which can be related to 

Fig. 5. Semivariogram models for the SRF: (a), (b) and the LSP approach: (c), (d).  

A. Gholampour                                                                                                                                                                                                                                  



Engineering Geology 297 (2022) 106485

8

the poor vertical semivariogram model. According to Fig. 7, the SRF 
approach predicts the qc1N profiles with only less than 10% difference at 
all four locations, averagely. However, the average difference reaches 
24% for LSP predictions. 

The target field values versus averaged SRF and LSP simulations are 
plotted for the section 1–1 and the results are shown in Fig. 8 (a) and (b), 
respectively. The model predictive validity is quantitatively assessed 
with the coefficient of determination (R2), where the more R2-value 
closer to one the more accurate model is. As can be seen in Fig. 8, the R2- 
value for sampled locations in both SRF and LSP approaches are almost 

equal to one, which indicates a complete agreement between both 
estimated values and the target field data. The coefficient of determi
nation for unsampled locations in SRF and LSP are respectively esti
mated as 0.26 and 0.56. Because of insufficient measured data, both 
values are relatively small. However, the R2-value in the SRF is twice 
bigger than in the LSP approach at unsampled locations which shows 
better performance of the SRF in site-scale analysis. 

6. Liquefaction potential mapping example: Oceano, California 
case study 

A liquefiable site is considered in this section to illustrate the nu
merical implementation of the SRF in conjunction with the previously 
described CPT-based empirical model. To conduct a probabilistic anal
ysis, the conditional random fields of CPT records are realized through 
the suggested approach and implemented as inputs of the empirical 
model to calculate the liquefaction potential safety factor. The entire 
process is numerously repeated according to the MCS concept. Thus, a 
MATLAB-based platform is coded to perform the numerical calculations. 
This program requires the measured field data, the geometry, and the 
discretization of the model (i.e., cylinder model dimensions, corre
sponding initial and interior sections details). 

6.1. Site location and geotechnical characteristics 

The site is located in Oceano, within the Central Coast Range prov
ince of California in the USA. The investigated area is bounded by 
Cabrillo Highway, Norswing, and Coolidge Drives. Ten CPT soundings 
are available in this site-scale case study, based on U.S. Geological 
Survey (2020), and only the first 10 m depth of CPT data is considered 
for simplicity. In Fig. 9, a satellite overview of the site and the 

Fig. 6. Comparing the volumetric distribution of normalized cone resistance.  

Fig. 7. The qc1N profiles for the target field, SRF and LSP approach at locations P1 to P4.  
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approximate CPT soundings locations are jointly demonstrated along 
with the initial sections. The U.S. Geological Survey (2020) explorations 
have indicated that the subsurface soil mostly consists of Eolian sand, 
which is classified as poorly graded sand with silt (SP-SM) and silty sand 
(SM). Acquired experience of many earthquakes has represented that 
this sediment type is significantly susceptible to liquefaction in case of 
being saturated (Youd and Perkins, 1978). Consequently, the located 
site is in areas with the highest potential of liquefaction and associated 
lateral spreading in Oceano (Holzer et al., 2005). 

In the current paper, the CPT soundings are labeled as S-1 to S-10. As 
it is common in site-scale projects, the CPT sounding locations are 
scattered within the studied area. In this analysis, S-1 is selected as the 
central CPT, and a cylindrical model with 10.0 m height and 84.0 m 
radius is chosen. In this modeling strategy, there is no limitation on the 
location of other CPT soundings after the selection of central CPT. For 
example, S-4, S-5, and S-9 are at a distance of 84.0 m from the center. 
However, other CPTs (e.g., S-2 or S-10) are closer to the model central 
axis. This means that the model radius can be arbitrarily selected in 
order to cover the intended domain. Ten initial sections are selected in 
the model, and their corresponding numbers are presented in Fig. 9. In 
this instance, it is assumed that the water table level (dw) is set at a fixed 
0.5 m distance from the ground surface. 

At first, the program generates the 2D random fields by the di
mensions of 84 m × 10 m, which are discretized by 3.0 m × 0.1 m 
rectangular elements. Hence, each random model’s initial section con
sists of 2800 elements. Then, 123 interior sections (i.e., n = 123) with an 

equal number of elements are specified. Through this process, a total 
number of 344,400 elements is exploited for generating the final model. 
The size and number of elements are attentively selected based on the 
result accuracy and computing time. Fig. 10 demonstrates the 3D model 
discretization. In this meshed model, the CPT sounding locations are 
also specified by red triangles. 

In liquefaction potential mapping, it is essential to specify the sub
surface conditions. As mentioned by Gong et al. (2020), the uncertainty 
of a geological model at a given site is categorized in two parts; strati
graphic uncertainty and geo-properties uncertainty. Yet, in this study, 
the soil characterization is achieved according to CPT results, including 
the tip resistance and the side friction and only the geo-properties un
certainty is addressed here. In the probabilistic context, these corre
sponding data and their respective locations are adopted for 
constructing SRFs in the assessment of spatial variability. The Cokriging 
method is applied in random field generation, in order to take the cross- 
correlations between CPT records into consideration. 

Since elements with 0.1 m thickness are implemented for dis
cretization, a local averaging is performed to smooth the CPT sounding 
data at each element. For this purpose, the CPT raw data, which are 
frequently measured in the vertical direction (taken in 0.05 m intervals), 
are averaged at 0.1 m intervals, with respect to the utilized element’s 
thickness. Then, the local averages are assigned to the corresponding 
elements. The CPT data and local averaging for S-10 are indicated in 
Fig. 11. It is worth noting that the tip resistance is presented in MPa, 
whereas the side friction is expressed in kPa. The results of local 

Fig. 8. The target field values versus the (a) the porposed SRF and (b) the LSP approach.  

Fig. 9. Satellite overview of the site and the CPT soundings locations.  Fig. 10. Discretization process in the proposed random field modeling.  
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Fig. 11. CPT sounding data and local averaging for S-10.  

Fig. 12. Results of local averaging for CPT soundings S-1 to S-9.  
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averaging for other CPT soundings along the depth are illustrated in 
Fig. 12. The diagrams of Fig. 12 are presented to display the variation 
domain of measured CPT parameters. This procedure has a negligible 
impact on the main results. To quantitatively assess this issue, the LPI is 
calculated at sounding locations, with and without applying the local 
averaging to the raw CPT data. The outcomes indicate that the mean of 
differences in the LPI determination results barely reach 2%. 

It must be noted that the sole source of uncertainty included in the 
current probabilistic study is the existing spatial variability of soil 
properties. Other sources of variability in liquefaction prediction (e.g., 
earthquake parameters) are not addressed here for simplification pur
poses. In the liquefaction prediction analysis of the case study, two 
earthquakes are considered. The first one is the 2003 San Simeon, Cal
ifornia, earthquake that caused liquefaction-induced lateral spreading at 
Oceano. The second one is a hypothetical earthquake based on the 
characteristics of the Los Osos fault, which is recognized as a high po
tential fault for creating intense ground shakings (Holzer et al., 2004). 
The values of the deterministic geotechnical parameters, as well as the 
parameters of the two corresponding earthquakes, are summarized in 
Table 1. 

7. Results and discussion 

7.1. Generation of the SRF 

In the first instance, the anisotropic semivariogram analysis is per
formed for both the tip resistance and the side friction, using the 
measured data points. Fig. 13 shows the semivariogram models for tip 
resistance at initial section 1–2 (see Fig. 9). As discussed previously, in 
the vertical direction, the semivariogram model can be accurately fitted 
based on frequent experimental data points which are presented by red 
squares in Fig. 13 (a). Four models (i.e. linear, spherical, exponential, 
and Gaussian) are examined to obtain the best fitting of semivariograms. 
For this purpose, two statistical indices (i.e., the residual sums of squares 
and the coefficient of determination) are provided to assess the models 
outputs and to investigate how well the models fit the semivariogram 
data. Based on these indices, an exponential model is chosen and a 0.35 
m range parameter is obtained for tip resistance in the vertical direction. 

In the next step, a lognormal distribution is assumed for the degree of 
anisotropy (ξ) which is accounted as a random variable in the proposed 
approach. The mean and standard deviation of the parameter are 
respectively adopted as 16 and 4, according to databased reported by 
Cami et al. (2020). For each realization of the initial section, a random 
value of ξ is picked and used in the determination of the early value of 
the horizontal range parameter, based on Eq. (6). 

As an example, a theoretical exponential model with a horizontal 
range of 4.41 m is estimated based on vertical semivariogram range 
parameter (i.e., Av = 0.35 m) and also a random value of 12.6 for the 
degree of anisotropy. The final horizontal model is shown by the black 
line in Fig. 13 (b) which is fitted to the one experimental data point. 
Because of the random nature of ξ, the horizontal range parameter is a 
random variable as well where its probability density function is shown 
in Fig. 13 (b). As can be seen, the Ah is variated between 5.5 m and 30.0 
m with the mean value of 14.6 m for this initial section. Other semi
variogram models based on the random variability of Ah are also pre
sented in Fig. 13 (b) for 300 simulations. Conclusively, the horizontal 
range parameters’ uncertainty is included in the semivariogram analysis 
through the proposed approach. 

After modeling the semivariogram for CPT parameters, the 

conditional random fields are generated through SGS across the initial 
sections. In Fig. 14, the variation of estimated CPT parameters is pre
sented in a typical realization at two sections (i.e., sections A-A’ and B-B′

in Fig. 9). Fig. 14 (a) and (b) indicate the random field for tip resistance 
and side friction at section A-A’, respectively. In this regard, section A-A’ 
includes the CPT soundings of S-1, S-2, and S-3. Similar to model veri
fication section, the CPT measured values versus the SRF estimates at 
sampled locations of section A-A’ are plotted. As expected in conditional 
random fields, an appropriate agreement (i.e., R2 = 0.98 and R2 = 0.99 
respectively for qc and f) is obtained between the estimated values and 
the measured data at sampling coordinates. 

As can be noted, most of the investigated region consists of loose 
sandy soil, based on a predictive correlation for relative density that has 
been suggested by Jamiolkowski et al. (2003). However, a very dense 
sand layer with high CPT parameters’ values is recognized in the depth 
of 5.0 m at the section’s left side. This layer is continued to the middle 
part of the model at a depth of almost 7 m, nearby S-1, and it is almost 
faded on the right side of the model close by the S-3. 

Fig. 14 (c) and (d) represent the random field for tip resistance and 
side friction at section B-B′, respectively. This section involves the CPT 
soundings of S-1, S-4, and S-5. Once more, a dense sand layer is recog
nized that is initiated from the left side of the section and is continued to 
the middle part of the model at a depth of 7 m. Through this layer’s 
proceeding to the section’s right side, the layer’s depth is enhanced, such 
that it reaches to around 10 m depth, nearby the S-5. The other parts of 
the section generally consist of loose sandy soil, which can be considered 
the prospective zones for liquefaction occurrence. 

After constructing random fields at initial sections, they are applied 
in the 1D rotating semivariogram analysis as the virtual known values. 
The lag distance is substituted by the angular distance between the 
corresponding elements to determine the experimental semivariogram 
data. These data are fitted by exponential model and the results are 
demonstrated for tip resistance, side friction, and the cross-correlation 
between them in Fig. 15 (a), (b) and (c), respectively. The correspond
ing data represents a low variance at close angular distances. While the 
variance increases by enhancing angular distances and the data express 
fluctuations. 

The random fields at the interior sections are obtained by using these 
semivariograms, and are merged together to generate 3D random 
models of CPT parameters. In this regard, Fig. 16 illustrates the final 
model of a realization for CPT records. Based on the proposed frame
work’s procedure, the model reproduces the initial sections’ data at their 
locations. For instance, the sliced model in Fig. 16 (b) proves that the 
SRF of tip resistance precisely generates the initial sections 1–2 and 1–5 
(Fig. 9), which are located at the left side of section A-A’ (Fig. 14-a) and 
the right side of section B-B′ (Fig. 14-c), respectively. In quantitatively 
assessing, the values of initial section 1–2 and 1–5 are respectively 
plotted versus the values at the left and right section of the slice model 
and consequently the R2 values of 0.95 and 0.96 are obtained. It is 
noticeable that the proposed model simulates local fluctuations of CPT 
records among the initial sections. 

The full and sliced SRF model for side friction through one realiza
tion are presented in Fig. 16 (c) and (d), respectively. Similarly, it is 
illustrated that the model regenerates the precise initial section data. As 
another example, the following point is confirmed in the sliced model 
presented in Fig. 16 (d) that the exact initial sections 1–2 and 1–5 are 
generated by SRF for side friction (i.e., R2 = 0.97 and R2 = 95, respec
tively). These sections are situated at the left side of section A-A’ 
(Fig. 14-b) and the right side of section B-B′ (Fig. 14-d), respectively. 
After generating the SRF for CPT parameters, the random field for unit 
weight is constructed using the correlation proposed by Robertson and 
Cabal (2010). The unit weight for most of the model areas is estimated 
between 18 and 20 kN/m3. 

By estimating the tip resistance, side friction, and unit weight at each 
element within the considered model, along with earthquake parame
ters, the FS against liquefaction occurrence can be acquired through 

Table 1 
Earthquake and geotechnical parameters required for liquefaction evaluation.  

Earthquake Mw amax (g) g (m/s2) dw (m) γw(kN/m3) 

San Simeon 6.5 0.25 
9.81 0.50 9.81 

Los Osos 6.8 0.40  
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exploiting the stated method of Section 2. Fig. 17 (a) and (b) present the 
full and sliced model of FS, respectively, for the Los Osos earthquake 
parameters (Table 1). Since the FS values are in an extended range, their 
logarithm is calculated and presented in Fig. 17. In this aspect, the 
colormap ranges from − 1.5 to 1.5 and hence, the areas with negative 
values correspond to the probable liquefaction occurrence (i.e. FS ≤ 1). 
As expected, the regions valued by high FS correspond with the dense 
sand layer areas and ground surface. 

7.2. Spatial distribution of the liquefaction probability 

The acquired liquefaction safety factors from the correlation-based 
approaches are always uncertain to some degree; in other words, it is 
never entirely precise. Hence, the deterministic methods cannot 
comprehensively evaluate the liquefaction hazard. To address this 
problem, the SRF generation steps are replicated in the sense of MCS to 
assess the liquefaction probabilistic characteristics of the considered 
site. In this regard, a total of 1000 realizations is performed for both tip 
resistance and side friction. These random fields are set as inputs to the 
empirical method described in section 2. Eventually, the process results 
in 1000 safety factors at each element. 

After determining safety factors, the liquefaction probability is ac
quired by calculating the ratio of the number of FS equal to or less than 1 
to the total number of realizations in each element. This parameter 
evaluates the liquefaction potential throughout the model volume dur
ing a specific earthquake. The main concern in the probabilistic analysis 
is simulating numerous SRF for CPT data to capture the fluctuations 
between measured points. Other than, determination of the probability 
can be performed either by classical definition (i.e., as explained above) 
or Bayesian theory (e.g., formulation by Juang et al., 2003). 

As mentioned earlier, two earthquakes are adopted here to analyze 
the liquefaction potential. The full and sliced model of PL values for the 
San Simeon, California earthquake are presented in Fig. 18 (a) and (b), 
respectively. The results indicate that the areas characterized by 
extremely high PL values are detected at scattered regions of the model. 
According to Fig. 18 (b), these areas are estimated to be located in the 
depth of 2 m to 6 m and 8 m to 10 m nearby S-1, and also in the depth of 
8 m and 10 m, close by S-2. However, the PL values in surficial regions 
are almost infinitesimal. 

During the San Simeon earthquake, the main cause of destruction to 
buildings, subsurface facilities and the road surfaces in Oceano has been 
a lateral spreading due to the liquefaction. The extension zone in lateral 

Fig. 13. Semivariogram analysis for an initial section 1–2.  

Fig. 14. Realization of the 2D conditional random field at two sections.  
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spreading, where the horizontal translations begin and form the ground 
cracks, has been started near the S-5. This zone has been obliquely 
traversed across the central point of the model (i.e., near S-1) and 
continued to the S-4 location (Holzer et al., 2005). Hence, section B-B′ in 
Fig. 9 is selected to assess the predictive ability of the model, based on PL 
spatial distribution. As can be seen in Fig. 18 (c), the scattered liquefi
able zones are jointed together along with this section and create a 
continuous strip with PL more than 0.55. It can be clearly seen that the 
projection of the strip on the ground surface is adequately compatible 
with the observed extension zone. 

A sand boiling area has also been noticed in the middle of the 
considered site which is marked in Fig. 18 (c). Textural properties of 
sand boils have been indicated that this liquefaction has been primarily 
localized in an undisturbed Eolian sand area which has been traced at 
the depth of 4 to 5 m according to the core samples from S-1 (Holzer 
et al., 2005). As can be seen, a concentrated area with the highest 
liquefaction probability is evaluated at the depth of 4 to 5 m beneath the 
marked location which is evidently compatible with the reports. 

Fig. 19 (a) and (b) depict the full and the sliced model of PL for the 
stronger earthquake (the Los Osos), respectively. Using this earth
quake’s parameters, the scattered areas with high PL are expanded and 
form continuous stripes along with the model. As presented in Fig. 19 
(b), the upper stripe is extended in the depth of 0.5 m to 6 m on the 
middle and 2 m to 6 m on the model’s right side. The lower stripe is 
expanded in the depth of about 8 m to 10 m throughout the model. This 
type of information can be advantageous in liquefaction mitigation 
methods such as ground improvement, in which accurate locating of the 
liquefiable zone is an essential factor and prevents the implementation 
of unreliable designs. 

7.3. Estimation of liquefaction severity 

In the context of estimating liquefaction severity, various quantities 
(e.g., LPI and LSI) can be defined to assess the seismic hazard. As 

mentioned before, an acceptable evaluation of liquefaction susceptibil
ity requires detailed calibration of the thresholds based on the observed 
severity of liquefaction. To calculate the surficial LPI field based on Eq. 
(3), the averaged safety factors in each element that is arranged in 
columns at interior sections are jointly utilized with the elements’ depth 
and thickness. In this case study, the reported results of Toprak and 
Holzer (2003) that are based on LPI thresholds in the California region 
are considered. These results indicated that liquefaction occurrence 
initiation is probable where LPI > 5 and its resulting lateral spreads 
appear where LPI > 12. 

Furthermore, the LSI is also evaluated for each column based on PL 
values to assess the severity of liquefaction and to provide an appro
priate platform for comparison of the FS-based and PL-based results. 
Here, the liquefaction severity classification of LSI proposed by Sonmez 
and Gokceoglu (2005) is used to map the liquefaction potential of the 
studied area. 

The comparison between LPI and LSI for both earthquakes is 
demonstrated in Fig. 20. As can be noted in Fig. 20 (a), the model’s 
central region (i.e., around S-1), the right side of the Norswing Drive 
near the area of the residential buildings (i.e., S-7, S-8 and, S-9), and the 
left side of Cabrillo Highway show a high degree of susceptibility to 
liquefaction and lateral spreading (i.e, LPI > 12). Mapping the lique
faction severity for the San Simeon earthquake is also presented in 
Fig. 20 (b) through LSI. In this regard, the LSI values reach around 0.8 at 
central areas of the model which is also categorized as high liquefaction 
severity area. However, the right side of the Norswing Drive and the left 
side of Cabrillo Highway is laid in the category of moderate liquefaction 
severity. Therefore, it is realized that the LPI results lead to more con
servative estimates of liquefaction severity with respect to the LSI pre
diction, based on considered classifications. 

Fig. 20 (c) and (d) represent the LPI and LSI values for the Los Osos 
earthquake, respectively. In Fig. 20 (c), it is illustrated that except a 
small zone in the left, the entire area of the model has LPI ≥ 15; thus, 
they are considered as areas with extremely high liquefaction severity. 

Fig. 15. Rotating semivariogram model.  

A. Gholampour                                                                                                                                                                                                                                  



Engineering Geology 297 (2022) 106485

14

Same results are acquired according to the LSI values in Fig. 20 (d), 
where the area with high liquefaction probability expands to the central 
areas of Callibro Highway and also encompasses almost the entire 
Norswing Drive. However, a more diverse classification for mapping of 
liquefaction susceptibility is obtained by using the LSI respect to the LPI 
results. 

These results provide advantageous information to predict the sur
ficial liquefaction severity. However, they alone cannot make any pre
dictions regarding the 3D liquefaction-prone zones of the soil depth and 
its corresponding sections. For example, Fig. 20 illustrate that the least 
liquefaction potential for both earthquakes is related to the left side of 

the model, nearby the S-2. While, the PL distribution based on Fig. 18 (b) 
and 19 (b) express those areas with extremely high liquefaction poten
tial are located in the depth of 8 m and 10 m, precisely under the left side 
of the model. Consequently, the hazard assessments based on liquefac
tion severity alone (e.g., the average index approach) cannot provide the 
comprehensive prediction of liquefaction potential. Since they cannot 
detect the local liquefiable zone at soil sections, they may lead to 
unconservative engineering judgments. 

Fig. 16. 3D model of SRF realization.  

Fig. 17. Estimated safety factors in one realization.  
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Fig. 18. The PL Model acquired through 1000 simulations for the San Simeon earthquake.  

Fig. 19. The PL Model acquired through 1000 simulations for the Los Osos earthquakes.  
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8. Conclusions 

A new modeling technique is proposed to generate a random field in 
a section-by-section sequence. Since a higher amount of the measured 
data is included, this strategy increases soil random field estimates’ 
accuracy. Thus, it becomes a beneficial approach for site-scale soil 
liquefaction problems. Through this method, more accurate vertical 
semivariogram models are determined which leads to an appropriate 
estimation of the layering characteristics. Based on the verification 
procedure, it is demonstrated that changing the modeling strategy from 
planar to sectional increases the prediction accuracy and reduces the 
computational effort. The SRF is implemented for a site-scale case study 
in Oceano, California. According to the evidence in the liquefaction- 
induced San Simeon earthquake, the proposed approach can effi
ciently identify the liquefiable zone throughout the soil volume. This 
type of prediction can be certainly useful in liquefaction mitigation 
methods such as ground improvement. The liquefaction severity of the 
case study is also assessed. It is realized that the LPI results lead to more 

conservative estimates of liquefaction severity with respect to the LSI 
prediction. However, by using the LSI, a more diverse classification for 
mapping of liquefaction susceptibility is obtained, especially for strong 
earthquakes. It is also illustrated that the hazard assessments based on 
liquefaction severity alone cannot provide the comprehensive prediction 
of liquefaction potential. Since they cannot detect the local liquefiable 
zone at soil sections, it may lead to unconservative engineering judg
ments. In this research, the only included source of uncertainty is the 
spatial variability of CPT records. Hence, further researches are required 
to include the uncertainty of earthquake loading into SRF-based prob
ability analysis of liquefaction. 
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Fig. 20. Comparison between LPI and LSI at the ground surface in both of the earthquakes.  
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Appendix A 

The general formulation of the CSR is adopted considering the magnitude scaling factor (MSF) and shear stress reduction factor (rd) 

CSR = 0.65
(
σv
/

σ′

v

)
(amax/g)(rd/MSF) (A.1)  

where σv and σ’v indicate the vertical total and effective stress at the considered depth, respectively. amax is the peak horizontal ground surface ac
celeration, and g is the acceleration of gravity. Following the study of Youd and Idriss (2001), the magnitude scaling and the shear stress reduction 
factor are respectively determined by: 

MSF = (Mw/7.5)− 2.56 (A.2)  

rd = 1.0 − 0.00765z z ≤ 9.15m
rd = 1.174 − 0.0267z 9.15m ≤ z ≤ 23m (A.3)  

where Mw represents the moment magnitude of the earthquake, and z indicates the depth of interest. To predict the CRR, a CPT-based neural network 
model, introduced by Juang et al. (2003), is implemented as follows: 

CRR = Cσexp
[
− 2.957+ 1.264(qc1N.cs/100)1.25

]
(A.4)  

where, 

Cσ = − 0.016
(
σ′

v

/
100

)3 + 0.178
(
σ′

v

/
100

)2 − 0.063
(
σ′

v

/
100

)
+ 0.903 (A.5)  

qc1N.cs =
[
2.429I4

C − 16.943I3
C + 44.551I2

C − 51.497IC + 22.802
]
qc1N (A.6) 

In Eq. (A.6), qc1N and Ic are respectively defined by: 

qc1N =
qc/100
σ′

v

/
100

(A.7)  

IC =

{

(3.47 − log10qc1N)
2 +

[

log10

(
f

qc − σ′

v

)

+ 1.22
]

2
}

0.5 (A.8)  

where qc and f indicate the measured tip resistance and the side friction, respectively. 

Appendix B 

The spatial correlation of random functions (i.e., soil properties) is characterized by the semivariogram. The formula for experimental univariate 
semivariogram γuu(h), is defined as follows 

γuu(h) =
1

2N(h)
∑N(h)

i=1
[Zu(xi) − Zu(xi + h) ]2 (B.1)  

where Zu(x) and Zu(x + h) are random functions that evolve with the particular lag vector h. In this formula, N(h) is the number of pairs of data points 
separated by h. On the other hand, the spatial structure of a pair of cross-correlated variables is described by the cross-semivariogram. The experi
mental cross-semivariogram for random functions Zu(x) and Zv(x) is computed using the following equation: 

γuv(h) =
1

2N ′
(h)

∑N(h)

i=1
[Zu(xi) − Zu(xi + h) ][Zv(xi) − Zv(xi + h) ] (B.2)  

where N′(h) is the number of pairs of data points, separated by ‘h’, which have measured values of both random function Zu(x) and Zv(x). The 
experimental semivariogram is replaced by a positive definite function, to have a physical meaning. There are several models which are used to fit the 
experimental semivariogram data (e.g., exponential, Gaussian, and linear function). These models are a function of three parameters; nugget variance, 
sill, and range. The range parameter, A, is calculated by: 

A =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2
h cos2(α − δ) + A2

v sin2(α − δ)
√

(B.3)  

where Ah and Av are the range parameters in the horizontal and vertical direction, respectively. This aspect of the model enables anisotropy deter
mination of soil spatial correlation. In Eq. (B.3), α indicates the angle between pairs, and δ represents the angle of maximum variation, which is set 
vertically in soils. Further details on the determination of semivariograms can be reviewed in Webster and Oliver (2007). 

A. Gholampour                                                                                                                                                                                                                                  



Engineering Geology 297 (2022) 106485

18

References 

Baker, Jack W., Faber, Michael H., 2008. Liquefaction risk assessment using geostatistics 
to account for soil spatial variability. J. Geotech. Geoenviron. 134 (1), 14–23. 

Ballegooy, Van, Sjoerd, Frederick Wentz, Boulanger, Ross W., 2015. Evaluation of CPT- 
based liquefaction procedures at regional scale. Soil Dyn. Earthq. Eng. 79, 315–334. 

Basarir, Hakan, Kumral, Mustafa, Karpuz, Celal, Tutluoglu, Levent, 2010. Geostatistical 
modeling of spatial variability of SPT data for a borax stockpile site. Eng. Geol. 114 
(3–4), 154–163. 

Bong, Taeho, Stuedlein, Armin W., 2018. Effect of cone penetration conditioning on 
random field model parameters and impact of spatial variability on liquefaction- 
induced differential settlements. J. Geotech. Geoenviron. 144 (5), 04018018. 

Cami, Brigid, Javankhoshdel, Sina, Phoon, Kok-Kwang, Ching, Jianye, 2020. Scale of 
fluctuation for spatially varying soils: estimation methods and values. ASCE-ASME J. 
Risk Uncertain. Eng. Syst. Part A: Civil Eng. 6 (4), 03120002. 

Caputo, Riccardo, Papathanassiou, G., 2012. Brief communication Ground failure and 
liquefaction phenomena triggered by the 20 May 2012 Emilia-Romagna (Northern 
Italy) earthquake: case study of Sant’Agostino-San Carlo-Mirabello zone. Nat. 
Hazards Earth Syst. Sci. 12 (10), 3177. 

Chen, Qiushi, Shen, Mengfen, Wang, Chaofeng, Hsein Juang, C., 2017. Verification of 
random field-based liquefaction mapping using a synthetic digital soil field. Geotech. 
Front. 236–245, 2017.  

Chung, Jaewon, David Rogers, J., 2017. Deterministic and probabilistic assessment of 
liquefaction hazards using the liquefaction potential index and liquefaction 
reduction number. J. Geotech. Geoenviron. 143 (10), 04017073. 

Dawson, Kevin M., Baise, Laurie G., 2005. Three-dimensional liquefaction potential 
analysis using geostatistical interpolation. Soil Dyn. Earthq. Eng. 25 (5), 369–381. 

Firouzianbandpey, Sarah, Ibsen, Lars Bo, Griffiths, D.V., Vahdatirad, M.J., Andersen, Lars 
Vabbersgaard, Sørensen, John Dalsgaard, 2015. Effect of spatial correlation length 
on the interpretation of normalized CPT data using a kriging approach. J. Geotech. 
Geoenviron. 141 (12), 04015052. 

Geyin, Mertcan, Maurer, Brett W., 2021. Evaluation of a cone penetration test thin-layer 
correction procedure in the context of global liquefaction model performance. Eng. 
Geol. 106221. 

Gholampour, A., Johari, A., 2019a. Reliability analysis of a vertical cut in unsaturated 
soil using sequential Gaussian simulation. Sci. Iranica 26 (3), 1214–1231. 

Gholampour, A., Johari, A., 2019b. Reliability-based analysis of braced excavation in 
unsaturated soils considering conditional spatial variability. Comput. Geotech. 115, 
103163. 

Gong, Wenping, Chao Zhao, C., Juang, Hsein, Tang, Huiming, Wang, Hui, Hu, Xinli, 
2020. Stratigraphic uncertainty modelling with random field approach. Comput. 
Geotech. 125, 103681. 

Greenfield, Michael W., Grant, Alex, 2020. Probabilistic regional-scale liquefaction 
triggering modeling using 3D Gaussian processes. Soil Dyn. Earthq. Eng. 134, 
106159. 

Holzer, T.L., Noce, T.E., Bennett, M.J., Di Alessandro, C., Boatwright, J., Tinsley, J.C., 
Sell, R.W., Rosenberg, L.I., 2004. Liquefaction-Induced Lateral Spreading in Oceano, 
California, during the 2003 San Simeon Earthquake. Open-file Rept 2004-1269. 
USGS, Menlo Park, CA.  

Holzer, Thomas L., Noce, Thomas E., Bennett, Michael J., Tinsley III, John C., 
Rosenberg, Lewis I., 2005. Liquefaction at Oceano, California, during the 2003 San 
Simeon earthquake. Bull. Seismol. Soc. Am. 95 (6), 2396–2411. 

Iwasaki, T., 1978. A practical method for assessing soil liquefaction potential based on 
case studies at various sites in Japan. In: Proc. Second Int. Conf. Microzonation Safer 
Construction Research Application, 2, pp. 885–896, 1978.  

Jaksa, Mark B., Fenton, Gordon A., 2000. Random field modeling of CPT data. 
J. Geotech. Geoenviron. 126 (12), 1212–1216. 

Jamiolkowski, Michele, Lo Presti, D.C.F., Manassero, Mario, 2003. Evaluation of relative 
density and shear strength of sands from CPT and DMT. In: In Soil Behavior and Soft 
Ground Construction, pp. 201–238. 

Juang, C. Hsein, Rosowsky, David V., Tang, Wilson H., 1999. Reliability-based method 
for assessing liquefaction potential of soils. J. Geotech. Geoenviron. 125 (8), 
684–689. 

Juang, C. Hsein, Yuan, Haiming, Lee, Der-Her, Lin, Ping-Sien, 2003. Simplified cone 
penetration test-based method for evaluating liquefaction resistance of soils. 
J. Geotech. Geoenviron. 129 (1), 66–80. 

Juang, C. Hsein, Shen, Mengfen, Wang, Chaofeng, Chen, Qiushi, 2018. Random field- 
based regional liquefaction hazard mapping—data inference and model verification 
using a synthetic digital soil field. Bull. Eng. Geol. Environ. 77 (3), 1273–1286. 

Kim, Han-Saem, Kim, Mirae, Baise, Laurie G., Kim, Byungmin, 2020. Local and regional 
evaluation of liquefaction potential index and liquefaction severity number for 

liquefaction-induced sand boils in pohang, South Korea. Soil Dyn. Earthq. Eng. 
106459. 

Lee, Der-Her, Chih-Sheng, Ku, Yuan, Haiming, 2004. A study of the liquefaction risk 
potential at Yuanlin, Taiwan. Eng. Geol. 71 (1–2), 97–117. 

Lenz, Jennifer A., Baise, Laurie G., 2007. Spatial variability of liquefaction potential in 
regional mapping using CPT and SPT data. Soil Dyn. Earthq. Eng. 27 (7), 690–702. 

Lin, A., Wotherspoon, L., Bradley, B., Motha, J., 2021. Evaluation and modification of 
geospatial liquefaction models using land damage observational data from the 
2010–2011 Canterbury Earthquake Sequence. Eng. Geol. 287, 106099. 

Liu, Chia-Nan, Chen, Chien-Hsun, 2006. Mapping liquefaction potential considering 
spatial correlations of CPT measurements. J. Geotech. Geoenviron. 132 (9), 
1178–1187. 

Liu, Chia Nan, Chen, Chien-Hsun, 2010. Spatial correlation structures of CPT data in a 
liquefaction site. Eng. Geol. 111 (1–4), 43–50. 

Na, Ung Jin, Chaudhuri, Samit Ray, Shinozuka, Masanobu, 2009. Effects of spatial 
variation of soil properties on seismic performance of port structures. Soil Dyn. 
Earthq. Eng. 29 (3), 537–545. 
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