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New role for photoexcited organic dye, Na2 eosin Y via the direct hydrogen 
atom transfer (HAT) process in photochemical visible-light-induced 
synthesis of spiroacenaphthylenes and 1H-pyrazolo[1,2-b] 
phthalazine-5,10-diones under air atmosphere 
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A B S T R A C T   

A green multi-component tandem strategy for metal-free synthesizing spiroacenaphthylenes and 1H-pyrazolo 
[1,2-b]phthalazine-5,10-diones by Knoevenagel-Michael cyclocondensation is reported via organic dye Na2 eosin 
Y-derived photoexcited states functions as a direct hydrogen atom transfer (HAT) catalyst via visible light- 
mediated in aqueous ethyl lactate at ambient temperature under air atmosphere. This study paves the new 
role for further use of a metal-free organic dye with commercial availability and inexpensiveness, Na2 eosin Y in 
photochemical synthesis with use of the lowest amount of catalyst, energy-effectiveness, excellent yields, 
operational simplicity, time-saving aspects of the reaction and high atom economy, thus meeting some features 
of sustainable and green chemistry. Notably, this cyclization is also runnable on gram scale, which highlights the 
potentiality of using this reaction in industrial uses.   

1. Introduction 

Eosin Y is a metal-free organic dye with easy availability that has 
gained a wide application in recent years, having economic and 
ecological superiority for substituting transition-metal-based photo
catalysts [1]. 

In eosin Y-catalyzed photoredox reactions, successfully oxidized/ 
reduced target substrates by its incited mode is normally dependent up 
on if the potential oxidability or reducibility of the substrates lies in the 
scope of that of eosin Y (Scheme 1) [1a]. 

The range of eosin Y-catalyzed photochemical reactions has been 
restricted by the mentioned electrochemical requisites. Being highly 
different from other organic dyes, eosin Y has unique xanthene and 
phenol moieties, and also prominent acid–base features, which may 
result in four differing constructs. There are ample documentations that 
the anionic types of eosin Y exhibit photocatalytic property in most of 
previous reports on photoreactions while the neutral types assumedly 
have typical inactivity and are ignorable in potentially applied synthesis 
processes [2]. In recent years, a team of Wang [3] and Wu [4] has been 
encouraged by the structural attributes of eosin Y, making an innovation 
in the discovery of novel activating states of photoexcited eosin Y. The 
group discovered that neutral eosin Y-originated incited modes could 

function as photoacids and direct hydrogen atom transfer (HAT) cata
lysts for activating glycals and native C–H bonds in respective order 
(Scheme 2) [1a]. 

Hydrogen atom transfer (HAT) is a basic stage possibly responsible 
for multiple processes chemically, environmentally, and biologically. In 
particular, benzophenone- and quinone-mediated direct HAT catalysis 
has been launched as an instrument that enables activating C–H bond 
under light radiation in recent years [5,6]. Recently, Direct HAT catal
ysis mediated by benzophenone and quinone has been discovered as an 
effective technique for activating C–H bond by irradiation [5,6]. Due to 
eosin Y and quinones [5] being similar, Wu and colleagues hypothesized 
that when exposed to visible spectrum, eosin Y under excitation may 
operate as a direct HAT catalyst, activating a C–H bond and generating 
radical species for additional functions [4]. Due to its captodative and 
steric properties, the radical species derived from eosin Y is unlikely to 
undergo the kinds of side reactions seen in HAT catalysis with diaryl 
ketones, allowing for a reverse transfer of hydrogen atom. Based on this 
mechanics, Wu and colleagues discovered that when exposed to visible 
spectrum, eosin Y in neutral form can effectively trigger numerous C 
(sp3)-H and C(sp2)-H bonds to start generating the corresponding radi
cals of carbon, allowing radical introduction to multiple alkenes with 
electron deficiency. This approach has a wide substrate purview and a 
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high group tolerance. The required C–H alkylation compounds were 
produced in high yields and with high site selection. With good site 
selection, a number of C(sp3)-H and C(sp2)-H bonds of ethers, thioethers, 
alcohols, aldehydes, and cyclohexanes were radical alkylated (e.g., 10 
c). This method may also be used toward a variety of tri- and tetrasub
stituted olefins with different features. This HAT catalysis approach, in 

particular, overcomes the substrate constraints of classic SET-based 
redox reactions [1a]. 

Also, visible light irradiation has been a reliable approach for green 
chemists because of its plentiful reserves of the energy, low cost and its 
renewable source of energy in the eco-friendly synthesis of organic 
compounds [7,8]. In general, light emitting diodes and compact fluo
rescent lights are employed as the sources of visible light for various 
transformations. 

Spiropyrans, pyrazolophthalazines and their analogues have attrac
ted attention to them because of their biological activities such as 
anticancer [9], fungicidal [10], anti HIV [11], antimalarial [12], anti
tubercular [13], in addition these spirocycles are MDM2 inhibitor [14] 
and progesterone receptor modulator [15], anti-inflammatory [16], anti 
microbiological [17], vasorelaxant [18], cardiotonic [19] and anticon
vulsant [20]. Some of them are shown with biological characteristics in 
Fig. 1. 

Numerous approaches for synthesizing spiroacenaphthylenes and 
1H-pyrazolo[1,2-b]phthalazine-5,10-diones using MCRs have been re
ported opposite different catalysts such as Et3N [21], [BDDMA]Cl [22], 
DABCO [23], DBU [24], Fe2O3 [25], NiFe2O4@SiO2@Melamine [26], 
Isinglass [27], SBA-Pr-SO3H [28], InCl3 [29], NiCl2⋅6H2O [30], [Bmim] 
OH [31], Ultrasound-assisted [32], P-TSA [33], STA [34], CuI 

Scheme 1. Oxidative and reductive quenching cycles of Eosin Y with their 
corresponding potentialities [1a]. 

Scheme 2. Exploration of photoexcited eosin Y as a photoacid or HAT catalyst [1a].  

Fig. 1. Some alkaloids containing biologically active compounds and heterocyclic spirooxindoles unit with two ring junction nitrogen atoms.  
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nanoparticles [35], PTSA/[Bmim]Br [36], TBBAD [37], Cu(OAc)2.H2O 
[38], K2CO3 [39], β-Cyclodextrin [40], [Bu3NH][HSO4] [41], CuO 
nanoparticles [42], NZF@HAP-Cs [43], theophylline [44], carbox
ymethyl cellulose [45], STA-Amine-Si-Magnetite [46] and Nano-ZnO 
[47]. These procedures resulted in numerous cases. Though, some of 
synthetic policies contain also restrictions regarding the metal catalyst, 
harsh reaction circumstances, expensive reagents, monotonous workup 
process, unacceptable yield, long reaction time, environmental hazard, 
and using the homogeneous catalyst that are problematically detached 
from the mixture of reaction. 

Given the above considerations and our interest in developing spi
roacenaphthylenes and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones 
production, the study of photocatalyst under green circumstances for the 
proper synthesis of these heterocyclic compounds has been an important 
goal. This study paves the new role for further use of a metal-free organic 
dye with commercial availability and inexpensiveness, Na2 eosin Y in 
above photochemical synthesis. Evidence indicates that Na2 eosin Y- 
derived photoexcited states functions as a direct hydrogen atom transfer 
(HAT) catalyst to synthesize spiroacenaphthylenes and 1H-pyrazolo 
[1,2-b]phthalazine-5,10-diones photochemically via Knoevenagel- 
Michael cyclocondensation via visible light-mediated in aqueous ethyl 
lactate at ambient temperature under air atmosphere. This reaction is a 
fruitful one-pot approach under highly effective, mild and facile reaction 
conditions. 

2. Experimental 

2.1. General 

Using a 9100 electro-thermal device, the melting points of all com
pounds were found. In addition, the nuclear magnetic resonance 
recording, the spectrum (1HNMR and 13CNMR) was performed on a 
Bruker (DRX-400), Bruker (DRX-300) and Bruker (DRX-100) in
struments using DMSO‑d6 as solvent. Mass spectra were recorded using 
an Agilent Technology (HP) spectrometer operating at an ionization 
potential of 70 eV. We bought the entire reagents from the chemical 
companies called Fluka, Merck, and Acros and used without additional 
treatment. 

2.1.1. Overall process of preparing (4a-j) 
To a mixture of malononitrile (2, 1.0 mmol), acenaphthequinone (1, 

1.0 mmol) and various reagents including a-methylencarbonyl com
pounds/enols (3a-j, 1.0 mmol) in a EL1/H2O (2:1) (3 mL), was added 
Na2 eosin Y (1.5 mol%), under white light emitting diode (LED) (18 W) 
irradiation (Scheme 3). The mixture was stirred for 4 h at ambient 
temperature. The reaction progress was monitored by TLC utilizing n- 
hexane/EtOAc (3:1) as an eluent. After completing the reaction, the 
achieved solid was filtered, rinsed with water and the crude solid was 
recrystallized from ethanol to provide the pure material without 

Scheme 3. Synthesis of spiroacenaphthylenes.  

Scheme 4. Synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones.  

1 Ethyl lactate. 
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requiring more purification. 

2.1.2. Overall process of preparing (7a-u) 
To a mixture of phthalhydrazide (5, 1.0 mmol), malononitrile (2, 1.0 

mmol) and aromatic aldehydes (6a-u, 1.0 mmol) in a EL/H2O (2:1) (3 
mL), was added Na2 eosin Y (1.5 mol%), under white light emitting 
diode (LED) (18 W) irradiation (Scheme 4). The mixture was stirred for 
3 h at ambient temperature. The reaction progress was monitored by 
TLC utilizing n-hexane/EtOAc (3:1) as an eluent. After completing the 
reaction, the achieved solid was filtered, rinsed with water and the crude 
solid was recrystallized from ethanol to provide the pure material 
without requiring more purification. 

The products were classified after the comparison of spectroscopic 
information (1HNMR, 13CNMR, mass). Support for this manuscript can 
be found in the following: 

2.1.3. 2-Amino-7,7-dimethyl-2,5-dioxo-5,6,7,8-tetrahydro-2H-spiro 
[acenaphthylene-1,4-chromene]-3-carbonitrile (4a) 

Yield: 93%; M.p. 262–264 ◦C; 1HNMR (400 MHz, DMSO‑d6): 1.02 
(3H, s, CH3), 1.04 (3H, s, CH3), 2.04–2.13 (1H, m, CH2), 2.50–2.51 (1H, 
m, CH2), 2.63 (2H, s, CH2), 7.32 (2H, s, NH2), 7.37–7.85 (6H, m, ArH). 

2.1.4. 2-Amino-2,5-dioxo-2H,5H-spiro[acenaphthylene-1,4-pyrano[3,2-c] 
chromene]-3-carbonitrile (4f) 

Yield: 89%; M.p. >300 ◦C; 1HNMR (300 MHz, DMSO‑d6): 7.41 (2H, 
s, NH2), 7.68–8.37 (10H, m, ArH). 

2.1.5. 3-Amino-1-(phenyl)-5,10-dihydro-5,10-dioxo-1H-pyrazolo[1,2-b] 
phthalazine-2-carbonitrile (7a) 

Yield: 96%; M.p. 272–274 ◦C; 1HNMR (400 MHz, DMSO‑d6): 6.14 
(1H, s, Hbenzylic), 7.33–7.48 (5H, m, HAr), 7.97–8.29 (6H, m, NH2 and 
HAr). 

2.1.6. 3-Amino-1-(2-nitrophenyl)-5,10-dihydro-5,10-dioxo-1H-pyrazolo 
[1,2-b]phthalazine-2-carbonitrile (7b) 

Yield: 91%; M.p. 263–265 ◦C; 1HNMR (400 MHz, DMSO‑d6): 6.62 
(1H, s, CHAr), 7.61 (1H, t, J = 9.6 Hz, ArH), 7.73 (1H, t, J = 9.6 Hz, 

ArH), 7.85–7.91 (2H, m, ArH), 7.97–8.30 (6H, m, NH2 and ArH). 

2.1.7. 3-Amino-1-(4-methylphenyl)-5,10-dihydro-5,10-dioxo-1H-pyrazolo 
[1,2-b]phthalazine-2-carbonitrile (7c) 

Yield: 94%; M.p. 254–256 ◦C; 1HNMR (400 MHz, DMSO‑d6): 2.30 
(3H, s, CH3), 6.10 (1H, s, CHAr), 7.18 (2H, d, J = 8.0 Hz, ArH), 7.34 (2H, 
d, J = 8.0 Hz, ArH), 7.97–8.28 (6H, m, NH2 and ArH). 

2.1.8. 3-Amino-1-(4-fluorophenyl)-5,10-dihydro-5,10-dioxo-1H-pyrazolo 
[1,2-b]phthalazine-2-carbonitrile (7e) 

Yield: 97%; M.p. 265–267 ◦C; 1HNMR (400 MHz, DMSO‑d6): 6.17 
(1H, s, CHAr), 7.20 (2H, t, J = 8.8 Hz, ArH), 7.53–7.57 (2H, m, ArH), 
7.96–8.26 (6H, m, NH2 and ArH). 

2.1.9. 3-Amino-1-(3-nitrophenyl)-5,10-dihydro-5,10-dioxo-1H-pyrazolo 
[1,2-b]phthalazine-2-carbonitrile (7g) 

Yield: 96%; M.p. 268–270 ◦C; 1HNMR (400 MHz, DMSO‑d6): 6.31 
(1H, s, CHAr), 6.94–7.05 (4H, m, ArH), 7.83–8.30 (6H, m, NH2 and 
ArH). 

2.1.10. 3-Amino-1-(2-chlorophenyl)-5,10-dihydro-5,10-dioxo-1H- 
pyrazolo[1,2-b]phthalazine-2-carbonitrile (7h) 

Yield: 86%; M.p. 255–257 ◦C; 1HNMR (400 MHz, DMSO‑d6): 6.47 
(1H, s, Hbenzylic), 7.39–7.65 (4H, m, HAr), 7.91–8.31 (6H, m, NH2 and 
HAr). 

2.1.11. 3-Amino-1-(4-nitrophenyl)-5,10-dihydro-5,10-dioxo-1H-pyrazolo 
[1,2-b]phthalazine-2-carbonitrile (7 m) 

Yield: 94%; M.p. 226–228 ◦C; 1HNMR (400 MHz, DMSO‑d6): 6.08 
(1H, s, CHAr), 7.13–7.27 (4H, m, ArH), 7.97–8.29 (6H, m, NH2 and 
ArH). 

2.1.12. 3-Amino-1-(3,4,5-trimethoxyphenyl)-5,10-dihydro-5,10-dioxo- 
1H-pyrazolo[1,2-b]phthalazine-2-carbonitrile (7n) 

Yield: 85%; M.p. 251–253 ◦C; 1HNMR (400 MHz, DMSO‑d6): 3.66 
(3H, s, OCH3), 3.76 (6H, s, 2 × OCH3), 6.07 (1H, s, Hbenzylic), 6.78 (2H, s, 
HAr), 7.89–8.29 (6H, m, NH2 and HAr). 

Table 1 
Optimization table of photocatalyst for the synthesis of 4a.  

Entry Photocatalyst Solvent (3 mL) Time (h) Isolated Yields (%) 

1  EL/H2O (2:1) 5 46 
2 Na2 eosin Y (0.5 mol%) EL/H2O (2:1) 4 77 
3 Na2 eosin Y (1.0 mol%) EL/H2O (2:1) 4 84 
4 Na2 eosin Y (1.5 mol%) EL/H2O (2:1) 4 93 
5 Na2 eosin Y (2 mol%) EL/H2O (2:1) 4 93 
6 Riboflavin (1.5 mol%) EL/H2O (2:1) 4 64 
7 Fluorescein (1.5 mol%) EL/H2O (2:1) 4 69 
8 Phenanthrenequinone (1.5 mol%) EL/H2O (2:1) 4 56 
9 9H-Xanthen-9-one (1.5 mol%) EL/H2O (2:1) 4 58 
10 Rose bengal (1.5 mol%) EL/H2O (2:1) 4 67 
11 Xanthene (1.5 mol%) EL/H2O (2:1) 4 49 
12 Erythrosin B (1.5 mol%) EL/H2O (2:1) 4 48 
13 Acenaphthenequinone (1.5 mol%) EL/H2O (2:1) 4 52 
14 Alizarin (1.5 mol%) EL/H2O (2:1) 4 59 
15 Rhodamine B (1.5 mol%) EL/H2O (2:1) 4 72 

aReaction condition: acenaphthequinone (1 mmol), malononitrile (1 mmol) and dimedone (1 mmol) in EL/H2O (2:1) (3 mL), white LED (18 W), and various pho
tocatalysts at rt. 
b Isolated yield. 
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13CNMR (100 MHz, DMSO‑d6): 56.5, 60.3, 61.7, 63.8, 104.6, 116.1, 
127.1, 127.7, 129.2, 129.4, 134.1, 134.6, 135.0, 137.7, 151.0, 152.8, 
153.9, 157.2. 

MS (EI) m/z (%): 406 (M+, 22), 389 (25), 366 (9), 275 (9), 239 (100), 
162 (12), 145 (9), 130 (20), 104 (51), 76 (46), 43 (28). 

2.1.13. 3-Amino-1-(4-chlorophenyl)-5,10-dihydro-5,10-dioxo-1H- 
pyrazolo[1,2-b]phthalazine-2-carbonitrile (7◦) 

Yield: 90%; M.p. 271–273 ◦C; 1HNMR (400 MHz, DMSO‑d6): 6.15 
(1H, s, Hbenzylic), 7.43 (2H, d, J = 11.2 Hz, HAr), 7.54 (2H, d, J = 11.2 Hz, 
HAr), 7.88–8.28 (6H, m, NH2 and HAr). 

Fig. 2. Photocatalysts tested in this study.  
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2.1.14. 3-Amino-1-(3-methylphenyl)-5,10-dihydro-5,10-dioxo-1H- 
pyrazolo[1,2-b]phthalazine-2-carbonitrile (7s) 

Yield: 92%; M.p. 249–251 ◦C; 1HNMR (400 MHz, DMSO‑d6): 2.30 
(3H, s, CH3), 6.08 (1H, s, Hbenzylic), 7.14–7.26 (4H, m, HAr), 7.97–8.29 
(6H, m, NH2 and HAr). 

2.1.15. 3-Amino-1-(3-chlorophenyl)-5,10-dihydro-5,10-dioxo-1H- 
pyrazolo[1,2-b]phthalazine-2-carbonitrile (7u) 

Yield: 84%; M.p. 267–269 ◦C; 1HNMR (300 MHz, DMSO‑d6): 6.15 
(1H, s, CHAr), 7.39–7.41 (2H, m, ArH), 7.44–7.48 (1H, m, ArH), 7.65 
(1H, s, ArH), 7.88–8.29 (6H, m, NH2 and ArH). 

3. Results and discussion 

Initially, the reaction between malononitrile (1.0 mmol), acenaph
thequinone (1.0 mmol) and dimedone (1 mmol) for the preparation of 
4a was studied in EL/H2O (2:1) (3 mL) promoted by light emitting diode 
(LED) irradiation at ambient temperature. Table 1 illustrates the results. 
Without the presence of photocatalyst, a 46% of 4a was seen at rt for 5 h 
in 3 mL EL/H2O (2:1). This reaction was promoted by examining a va
riety of organic photocatalysts including Na2 eosin Y, riboflavin, fluo
rescein, phenanthrenequinone, 9H-xanthen-9-one, rose Bengal, 
Xanthene, erythrosin B, acenaphthenequinone, Alizarin and rhodamine 
B (Fig. 2) in similar settings. Satisfactorily, the progress of this reaction 
and obtaining the matching product 4a were observed in 46–93% yields 
(Table 1). According to our findings, Na2 eosin Y was of superior func
tioning for this reaction. The yield was increased to 93% by using 1.5 
mol% Na2 eosin Y (Table 1, entry 4). Also, low yield of products were 

detected in toluene, CHCl3, THF, CH2Cl2, DMSO, DMF and CH3CN 
(Table 2). While the reaction proceeded sluggishly in EtOAc, EtOH, EL, 
MeOH, H2O, solvent-free, H2O/EtOH and EL/H2O the yield and reaction 
rate increased (Table 2). In EL/H2O (2:1), the reaction proceeded very 
well, and 93% yield was obtained under identical conditions (Table 2, 
entry 12). The yield was screened by various light sources, revealing that 
it rose somewhat by white light (Table 2, entry 12). An experimental 
control revealed that a miniscule of the product was detectable without 
the use of light source (Table 2, entry 22). The observation sindicate the 
essentiality of Na2 eosin Y and visible light to successfully form the 
product 4a. Also, the optimized settings were determined by varying the 
intensities of white LED (10 W, 12 W, 18 W and 20 W) irradiation. Based 
on Table 2, the best outcomes were found in the presence of white LED 
(18 W) irradiation (Table 2, entry 12). As observed in Table 3 and 
Scheme 3 it was indicated that this technique can work with various 
substrates. 

Also in continuation, the reaction between phthalhydrazide (1 
mmol), benzaldehyde (1 mmol) and malononitrile (1 mmol) for the 
preparation of 7a was studied in EL/H2O (2:1) (3 mL) promoted by light 
emitting diode (LED) irradiation at ambient temperature. Table 4 il
lustrates the results. Without the presence of photocatalyst, a 51% of 7a 
was seen at rt for 4.5 h in 3 mL EL/H2O (2:1). This reaction was pro
moted by examining a variety of organic photocatalysts including Na2 
eosin Y, riboflavin, fluorescein, phenanthrenequinone, 9H-xanthen-9- 
one, rose Bengal, Xanthene, erythrosin B, acenaphthenequinone, Aliz
arin and rhodamine B (Fig. 2) in similar settings. Satisfactorily, the 
progress of this reaction and obtaining the matching product 7a were 
observed in 51–96% yields (Table 4). According to our findings, Na2 

Table 2 
Optimization table of solvent and visible-light for the synthesis of 4a.  

Entry Light Source Solvent (3 mL) Time (h) Isolated Yields (%) 

1 White light (18 W) EtOAc 4 71 
2 White light (18 W) EtOH 4 76 
3 White light (18 W) EL 4 79 
4 White light (18 W) MeOH 4 68 
5 White light (18 W) H2O 4 73 
6 White light (18 W)  4.5 67 
7 White light (18 W) H2O/EtOH (1:1) 4 81 
8 White light (18 W) H2O/EtOH (1:2) 4 76 
9 White light (18 W) H2O/EtOH (2:1) 4 85 
10 White light (18 W) EL/H2O (1:1) 4 87 
11 White light (18 W) EL/H2O (1:2) 4 83 
12 White light (18 W) EL/H2O (2:1) 4 93 
13 White light (18 W) Toluene 5.5 30 
14 White light (18 W) CHCl3 6 21 
15 White light (18 W) THF 5 36 
16 White light (18 W) CH2Cl2 6 17 
17 White light (18 W) DMSO 5 23 
18 White light (18 W) DMF 5 29 
19 White light (18 W) CH3CN 5.5 19 
20 Green light (18 W) EL/H2O (2:1) 4 91 
21 Blue light (18 W) EL/H2O (2:1) 4 87 
22  EL/H2O (2:1) 6 <5 
23 White light (10 W) EL/H2O (2:1) 4 82 
24 White light (12 W) EL/H2O (2:1) 4 88 
25 White light (20 W) EL/H2O (2:1) 4 93 

aReaction condition: acenaphthequinone (1 mmol), malononitrile (1 mmol) and dimedone (1 mmol), Na2 eosin Y (1.5 mol%) at rt. 
b Isolated yield. 
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eosin Y was of superior functioning for this reaction. The yield was 
increased to 96% by using 1.5 mol% Na2 eosin Y (Table 4, entry 4). Also, 
low yield of products were detected in toluene, CHCl3, THF, CH2Cl2, 
DMSO, DMF and CH3CN (Table 5). While the reaction proceeded slug
gishly in EtOAc, EtOH, EL, MeOH, H2O, solvent-free, H2O/EtOH and EL/ 

H2O the yield and reaction rate increased (Table 5). In EL/H2O (2:1), the 
reaction proceeded very well, and 96% yield was obtained under iden
tical conditions (Table 5, entry 12). The yield was screened by various 
light sources, revealing that it rose somewhat by white light (Table 5, 
entry 12). An experimental control revealed that a miniscule of the 

Table 3 
Photoexcited organic dye Na2 eosin Y as photocatalyst for synthesis of spiroacenaphthylenes. 
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Table 4 
Optimization table of photocatalyst for the synthesis of 7a.  

Entry Photocatalyst Solvent (3 mL) Time (h) Isolated Yields (%) 

1  EL/H2O (2:1) 4.5 51 
2 Na2 eosin Y (0.5 mol%) EL/H2O (2:1) 3 82 
3 Na2 eosin Y (1.0 mol%) EL/H2O (2:1) 3 91 
4 Na2 eosin Y (1.5 mol%) EL/H2O (2:1) 3 96 
5 Na2 eosin Y (2 mol%) EL/H2O (2:1) 3 96 
6 Riboflavin (1.5 mol%) EL/H2O (2:1) 3 70 
7 Fluorescein (1.5 mol%) EL/H2O (2:1) 3 74 
8 Phenanthrenequinone (1.5 mol%) EL/H2O (2:1) 3 59 
9 9H-Xanthen-9-one (1.5 mol%) EL/H2O (2:1) 3 54 
10 Rose bengal (1.5 mol%) EL/H2O (2:1) 3 58 
11 Xanthene (1.5 mol%) EL/H2O (2:1) 3 55 
12 Erythrosin B (1.5 mol%) EL/H2O (2:1) 3 61 
13 Acenaphthenequinone (1.5 mol%) EL/H2O (2:1) 3 63 
14 Alizarin (1.5 mol%) EL/H2O (2:1) 3 68 
15 Rhodamine B (1.5 mol%) EL/H2O (2:1) 3 76 

aReaction condition: phthalhydrazide (1 mmol), benzaldehyde (1 mmol) and malononitrile (1 mmol) in EL/H2O (2:1) (3 mL), white LED (18 W), and various pho
tocatalysts at rt. 
b Isolated yield. 

Table 5 
Optimization table of solvent and visible-light for the synthesis of 7a.  

Entry Light Source Solvent (3 mL) Time (h) Isolated Yields (%) 

1 White light (18 W) EtOAc 3 75 
2 White light (18 W) EtOH 3 81 
3 White light (18 W) EL 3 84 
4 White light (18 W) MeOH 3 74 
5 White light (18 W) H2O 3 76 
6 White light (18 W)  3 62 
7 White light (18 W) H2O/EtOH (1:1) 3 85 
8 White light (18 W) H2O/EtOH (1:2) 3 81 
9 White light (18 W) H2O/EtOH (2:1) 3 88 
10 White light (18 W) EL/H2O (1:1) 3 90 
11 White light (18 W) EL/H2O (1:2) 3 85 
12 White light (18 W) EL/H2O (2:1) 3 96 
13 White light (18 W) Toluene 4 27 
14 White light (18 W) CHCl3 4.5 18 
15 White light (18 W) THF 3.5 29 
16 White light (18 W) CH2Cl2 4.5 12 
17 White light (18 W) DMSO 4 32 
18 White light (18 W) DMF 3.5 35 
19 White light (18 W) CH3CN 4 25 
20 Green light (18 W) EL/H2O (2:1) 3 93 
21 Blue light (18 W) EL/H2O (2:1) 3 89 
22  EL/H2O (2:1) 4.5 <5 
23 White light (10 W) EL/H2O (2:1) 3 84 
24 White light (12 W) EL/H2O (2:1) 3 91 
25 White light (20 W) EL/H2O (2:1) 3 96 

aReaction condition: phthalhydrazide (1 mmol), benzaldehyde (1 mmol) and malononitrile (1 mmol), Na2 eosin Y (1.5 mol%) at rt. 
b Isolated yield. 
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Table 6 
Photoexcited organic dye Na2 eosin Y as photocatalyst for synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones. 
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product was detectable without the use of light source (Table 5, entry 
22). The observation sindicate the essentiality of Na2 eosin Y and visible 
light to successfully form the product 7a. Also, the optimized settings 
were determined by varying the intensities of white LED (10 W, 12 W, 
18 W and 20 W) irradiation. Based on Table 5, the best outcomes were 
found in the presence of white LED (18 W) irradiation (Table 5, entry 
12). As observed in Table 6 and Scheme 4 it was indicated that this 
technique can work with various substrates. 

Scheme 5 shows the suggested mechanism for synthesizing spi
roacenaphthylenes. With the use of visible light, malononitrile (2) is 
subjected totautomerisation to give (A). Afterwards, (A) and acenaph
thequinone (1) react to form arylidenemalononitrile (B), undergoing an 
activation photochemically for the formation of a radical intermediate 
(C), in which visible light can partially affect with exerting extra energy 
to accelerate the reaction. As reported in previous studies [1a,1d,4], 
eosin Y-originated photoexcited modes can function as direct hydrogen 
atom transfer (HAT) catalysts for activating C–H bonds. The malono
nitrile radical is formed by the promotion of visible light triggered Na2 
eosin Y* via a HAT procedure. Ground-state Na2 eosin Y and the inter
mediate D are regenerated by occurring reverse hydrogen atom transfer 
(RHAT) process between eosin Na2 Y–H and radical adduct C. Then, 
malononitrile radical extracts a hydrogen atom from (E) to produce 

intermediate (F). Subsequently, intermediate (D) and (F) coalesce to 
generate (G) as Michael acceptor, additionally undergoing tautomer
isation and intramolecular cyclization for the product formation (4). 

Scheme 6 shows the suggested mechanism for synthesizing 7a-u. 
With the use of visible light, malononitrile (2) is subjected totauto
merisation to give (I). Afterwards, (I) and aldehyde derivatives (6) react 
to form arylidenemalononitrile (J), undergoing an activation photo
chemically for the formation of a radical intermediate (K), in which 
visible light can partially affect with exerting extra energy to accelerate 
the reaction. As reported in previous studies [1a,1d,4], eosin Y-origi
nated photoexcited modes can function as direct hydrogen atom transfer 
(HAT) catalysts for activating C–H bonds. The malononitrile radical is 
formed by the promotion of visible light triggered Na2 eosin Y* via a 
HAT procedure. Ground-state Na2 eosin Y and the intermediate L are 
regenerated by occurring reverse hydrogen atom transfer (RHAT) pro
cess between eosin Na2 Y–H and radical adduct K. Subsequently, in
termediate (L) and (5) coalesce to generate (M) as Michael acceptor, 
additionally undergoing tautomerisation and intramolecular cyclization 
for the product formation (7). 
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4. Study on the mechanism of photocatalytic reactions with 
eosin Y 

Most importantly, Eosin Y is employed as a photoredox catalyst in 
the synthetic process of organics. In recent years, Rossi [48], Mahmood 
[49], Majek [2b], Eid [50] and et al. have studied the use of Eosin Y in 
photoredox reactions and the effect of UV light, PH and also the effect of 
temperature on the rate of reactions. 

5. Effect of the light source on the eosin Y-mediated 
photocatalysis 

Catalytically, the features of Eosin Y depend upon its reduction/ 
oxidation potentiality [48]: the oxidation and reduction potentials vary 
from − 1.06 V to1.10 V and +0.78 V to+0.83 V, respectively (Scheme 1). 
Its absorption is maximized at 539 nm, with a molar extinction coeffi
cient of ε = 60803 M− 1 cm− 1 (Fig. 3a and b). Accordingly, light-emitting 
diodes (LEDs) are typically utilized conveniently as lighting sources for 

Scheme 5. Recommended mechanistic path for synthesizing spiroacenaphthylenes.  
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activating Eosin Y (maximal emission about 530 nm). Once excited by 
light, Eosin Y experiences a fast intersystem transition from the ground 
state to the lowermost energy triplet state. It cannot directly undergo the 
singlet–triplet transition, but Eosin Y electrons are excited by light to a 
greater excited singlet state from where they undergo quick relaxation to 
the lowermost excited singlet state. This is where only excited electrons 

experience an intersystem transition to the high reactive triplet state, 
with a lifespan of 24 ms [48]. 

The interaction of pH and UV light on the rate of radical production 
has also been investigated. The initial rate is also enhanced by EY con
centrations at low pH, but the initial rate shows a significant enhance
ment by UV light. There as on for this is because extra radicals form 

Scheme 6. Recommended mechanistic path for synthesizing 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives.  
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when the dye molecules are excited by UV light [50]. 
The source of irradiation is another reaction factor that has not been 

clearly and consistently documented in previous research [2b]. Our 
research team is among the researchers who have employed commer
cially available narrow-band LEDs with a maximal intensity at 535 nm. 
Irradiation of other reactions was done by broad-band compact fluo
rescent lamps (CFLs). To determine quantum yields, it is necessary to 
utilize narrowband lighting sources because the optical density of the 
samples varies with the wavelength. In this study, therefore, the influ
ence of various irradiations was investigated throughout the photo
catalytic reaction. Despite the undetermined types of CFLs in previous 
research, analogous spectral arrays are covered by most of 
commercially-available CFLs in which the UV edge individually is 

significantly <400 nm and with considerable radiation power in the area 
of 400–500 nm. Similarly, a wavelength range is observed in the spectra 
of commercially available LEDs [2b] (Fig. 4 [51]). 

6. Effect of PH on the eosin Y-mediated photocatalysis 

Once Eosin Y is in a solution, it is in equilibrium with four varying 
types as it contains two rather acidic protons (pKa 2.0 and 3.8 in water, 
Scheme 7), all of which depend on the pH. At pH < 2, the protonated 
spirocyclic type EY1 equilibrates with the neutral type EY2. At 2 < pH >
3.8, however, the mono anionic type EY3 equilibrates with the dianionic 
type EY4, becoming dominant at pH > 3.8. Only EY3 and EY4 have 
catalytic activity, but this function as resulted in uncertainties in bulk of 
literature concerning the quality of the dye responsible for the 

Fig. 3. a. Eosin Y absorption spectrum in EtOH solution [48]. 
b. The Spectrum of Eosin Y in aqueous solution [49]. 

Fig. 4. Emission spectrum of a commercial white light LED [51].  

Scheme 7. Acid–base equilibria of Eosin Y in water [48].  

Fig. 5. Effect of pH on the absorbance, at λmax = 517 nm, of Eosin Y solu
tion [49]. 
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transmutation. To assure that the dianionic type EY4 is present, Eosin Y 
sodium salt is utilized as a photocatalyst, though it is necessary to take 
account of the reaction situations of chemical transmutation in the 
experiment [48]. 

Eid [50] investigated the impact of pH on the absorbance values of 
the binary complexes in the pH ranging from 2.6 to 4.5; adjusting to a pH 
of 5 leads to negative absorbance values. 

A pH of 3.5 resulted in the optimal absorbance values. Two ml of 0.4 
M acetate buffer could sufficiently optimize the pH level. When the 
drug-dye solution is mixed at neutral pH, it is necessary to add the buffer 
solution for the uppermost color intensity and maximal accuracy. 

Similarly, Mahmood [49] examined the impact of pH on absorbance. 
The absorbance of EY (Fig. 5) rises with raising the pH of its solution, 
and its reduction is minimal in the pH level of about 4, above which it 
rises with pH. In contrast, radicals undergo destruction at minimum pH 
values. 

7. Effect of temperature on the eosin Y-mediated photocatalysis 

The effect of temperature on the absorbance value of binary com
plexes was researched by Eid [50]. The color intensity was finally 
maximal at ambient temperature, and an increase in the temperature led 
to forming a deposit possibly because of coagulating the created com
plex. Consequently, room temperature is ideal for Eosin Y catalytic 
reactions. 

8. Conclusion 

Current survey revealed that organic dye Na2 eosin Y-derived 
photoexcited states functions as a direct hydrogen atom transfer (HAT) 
catalyst can be employed for photochemically metal-free synthesizing 
spiroacenaphthylenes and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones 
via three-condensation domino reaction of tandem Knoevenagel- 
Michael cyclocondensation via visible light-mediated in aqueous ethyl 
lactate at ambient temperature under air atmosphere. The use of the 
lowest amount of catalyst, utilizing great yields, efficient sides of the 
reaction, direct work-up with no column chromatographic separation, 
secure reaction circumstances, appropriate and expedient procedure 
and avoiding the hazardous catalysts or solvents are the most conspic
uous pros of this green protocol. These characteristics have caused this 
procedure to be highly beneficial in facing the environmental worries 
and industrial needs. 
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