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Abstract
Due to the uncontrollable growth of data generation in various networks, rapid clustering of massive datasets is seriously

demanded in order to reveal the hidden structure of data as well as discovering the relations among samples. Among the

clustering approaches, density-based clustering methods showed an acceptable processing speed to encounter with big data.

However, they have some fixed parameters, which are not certainly optimized for all parts of the feature space. Moreover,

the complexity of these clustering methods is highly dependent on the number of samples. In this paper, we have deployed

Fisher expectation maximization (FEM) to adaptively divide the feature space into some subspaces, where no cluster is

shared between the adjacent subspaces. Afterward, we applied density-based spatial clustering of applications with noise

(DBSCAN) to each partition yielding to decrease the computational complexity on each thread as well as better learning of

its parameters on each subspace. The performance of the proposed method was assessed over three big-size and ten middle-

size datasets. The achieved results implied the superiority of the proposed method to OPTICS, Den Clue and DBSCAN

methods in terms of clustering accuracy (purity) and processing time.

Keywords Big data � Fisher expectation maximization (FEM) � Adaptive DBSCAN

1 Introduction

In the last decade, social networks like Facebook and

Twitter have become an essential part of the people’s

life and numerous data were daily generated in the form

of advertising message, email, tweets, comments, videos,

audios and texts. To manage this huge volume of sam-

ples (big data), several methods were developed to

arrange and categorize them. As far as labeling is a time

consuming and costly process, research teams tended to

categorize big data in an unsupervised manner, though

the categorization accuracy of classification methods is

higher than the clustering ones. Nonetheless, developing

efficient clustering methods, to provide an

acceptable performance and to execute in a short interval

time, is still a challenge (Kazemi 2018). In fact, a

clustering algorithm assigns samples to different clusters

according to a similarity/dissimilarity measure and these

process is iteratively learned under a criterion (objective

function) like mean square error (MSE) or maximizing

the distance between the clusters simultaneous with

shrinking the samples within each cluster (Fisher value).

Among the plenty of suggested clustering schemes, just a

few can handle big data in a timely manner.

Clustering methods can be fundamentally divided into

four categories of partition based, graph based, hierar-

chical and density based (Bhardwaj and Dash 2015). K-

means (Zhou et al. 2019), Iso-Data (Sadeghi-Mobarakeh

and Mohsenian-Rad 2018) and CURE (Cai and Liang

2018) are the known partition-based clustering methods

in several fields (Soni and Ganatra 2012), whereas they

are all order sensitive and successive running of them on

a certain dataset yield into the same results. Moreover,

partition-based methods are unable to remove noisy

samples, which diminish the quality of the formed

clusters. Graph-based methods (e.g., shared nearest

neighbor (Ye and Sakurai 2015; Zhou et al. 2019) con-

sider samples as nodes of a graph and try to determine
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trustable links among the nodes in order to create

meaningful clusters. These methods are able to create

clusters with different sizes and shapes and also capable

of removing noisy samples. Nonetheless, defining a

proper similarity function for these algorithms is

problematic.

Hierarchical clustering methods like single and com-

plete linkage (Nagpal et al. 2013) suffer from high com-

putational complexity as well as the absence of a reliable

termination criterion. Moreover, these methods are unable

to remove noisy samples, though they can form clusters

with different sizes and shapes.

Density-based clustering methods have recently

attracted much attention of research teams due to their

applicability in handling big datasets as well as provid-

ing acceptable clustering performance. Density-based

methods can be categorized in two categories. A few

methods like Den Clue (Kriegel et al. 2011) and its

variants estimate a probability density function (PDF)

using a nonparametric method like Parzen window. Next,

by applying a threshold to the estimated PDF and run-

ning the hill-climbing method on the dense regions, the

center and boundary of clusters are determined.

Nonetheless, these methods suffer a high computational

complexity when it is encountered with large number of

samples. The second category of density-based methods

are all based on density-based spatial clustering of

applications with noise (DBSCAN) (Bhardwaj and Dash

2015) method, which is the most known and break-

through clustering algorithm. DBSCAN provides low

computational complexity, flexible enough to create

clusters with arbitrary sizes/shapes as well as removing

noisy samples, though it suffers from a high computa-

tional burden in confronting with high-dimensional

datasets (e.g., text data), although these properties make

DBSCAN as different densities. In addition, the original

version of DBSCAN has no data-driven mechanism for

estimating its parameters. A suitable method for big data

clustering, it suffers from high sensitivity to its initial

parameters such as Min-Pts and e. DBSCAN cannot

detect the gradient of distribution within a cluster and it

may concatenate adjacent clusters.

In this paper, the researchers presented a clustering

method that has the ability to cluster big data. In this work

Fisher expectation maximum (FEM) used to divide a fea-

ture space to some subspaces. Then, in each subspace

parameters of DBSCAN algorithm are tuned according to

Gap-Statistics index. Finally, DBSCAN algorithm were

executed in parallel on subspaces. The researchers evalu-

ated the proposed method on standard datasets. The results

showed that the proposed method is better than outperforms

OPTICS and DBSCAN and Other clustering methods.

2 Related Works

Due to the undeniable positive points of DBSCAN, this

method is the base of most density-based methods and

research teams have been focused to modify this manner by

addressing its weaknesses. Ordering points to identify the

clustering structure (OPTICS) (Bhardwaj and Dash 2015)

is introduced as the adaptive version of DBSCAN which is

able detects clusters with different densities by gradually

adapting the value of e. Nevertheless, OPTICS needs a lot

of time to incrementally adapt its parameters and cannot

explicitly find the boundary of clusters. Local DBSCAN

(Noticewala and Vaghela 2014) is designed to detect and

create clusters, where no gradient change is happened

within a cluster. However, it excludes a considerable

number of samples as noisy samples, which diminishes its

clustering accuracy and needs a plenty of time to cluster

input samples; consequently, LDBSCAN is not suitable for

big data clustering.

Fast DBSCAN (Duan et al. 2007) which is designed to

keep core samples (seeds), is located in the center of local

symmetric hyper-spheres in the feature space and removes

a considerable number of samples that deteriorate the

densities. This preprocessing leads to discard valuable

information and therefore decreases the clustering accuracy

at the cost of having faster execution. FDBSCAN is just

able to provide acceptable performance on symmetric

datasets while in practice we are encountered with variety

of asymmetric (e.g., skewed) datasets.

Multi-density DBSCAN algorithm, upon the density

levels partitioning (DBSCAN-DLP) (Xiong et al. 2012) is

developed to segment input data into various density level

sets, where statistical indexes are used to detect the density

gradient. Afterward, it estimates e for each density level

set, and then applies DBSCAN to the corresponding set.

The performance of DBSCAN-DLP is sensitive to Min-Pts

as well as suffering high computational complexity when it

faces with large datasets. Running the K-means clustering

in the heart of this algorithm in accompany with running a

sorting algorithm, increases the time complexity of this

algorithm.

Varied DBSCAN (Liu et al. 2007) is a spatial clustering

algorithm, which tries to detect the variation of density

during the clustering. It adaptively estimates the value of e
by determining the distance of kth nearest neighbor of all

samples and sort this distance (k-dist) in an ascending

order, where k acts similar to Min-Pts. At each jump in the

k-dist graph, the value of e is determined for a cluster. In

the next stage, DBSCAN is run for the previously deter-

mined e values in order to detect clusters with different

densities. The idea of VDBSCAN is similar to that of

DBSCAN-DLP and they share similar advantages and
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disadvantages. Partition-based DBSCAN (PDBSCAN) is

proposed to divide the feature space into small partitions

with the hope of having a uniform density at each partition.

Then, a DBSCAN is applied to each partition and parallel

executing of them leads to diminish the execution time. To

improve the preprocessing of PDBSCAN, ant clustering

algorithm (ACA) is first applied to inputs in order to

improve the partitioning process in a way that the distri-

bution of density became uniform and then PDBSCAN is

applied to the tuned partitions. This method is termed as

PACA-DBSCAN (Chaudhari Chaitali 2012), which is able

to produce convincing results on small- and mid-size

datasets while its complexity is intolerable when encoun-

ters with millions of samples.

DBSCAN for spatial-temporal data (ST-DBSCAN)

(Birant and Kut 2007), is another extension of DBSCAN

that added three conditions for better estimation of core

points, noisy samples and adjacent clusters. This method

is designed to be applied in big datasets, which are

stored as temporal slices over the spatial bases (large

spatial-temporal data). Nonetheless, applying these three

conditions increases the complexity of algorithm at the

cost of better clustering quality. In another modification,

input samples are considered as graph nodes and mini-

mum spanning tree (MST) is applied to this graph for

optimizing the e parameter in DBSCAN, which is termed

as MDBSCAN (Chowdhury and Bhattacharjee 2014).

Similar to the former extensions of DBSCAN, it suffers

from high computational burden when running MST on a

huge graph to adaptively estimate e. A scalable Map

Reduce version of DBSCAN, termed as MR-DBSCAN

(He et al. 2014) is introduced for asymmetric datasets

having either skewed- or long tails-distributions. Map

Reduce is a known platform in parallel programming to

speed up the execution time and include four stages.

They proposed a rapid partitioning strategy to concate-

nate those partitions, which contains the same cluster, by

some statistical metrics. On the other hand, due to the

asymmetric form of clusters, one cell has several

neighbors and therefore, the merging process can lead to

decrease the clustering accuracy as well as imposing

additional computational burden.

Analyzing the DBSCAN extensions over static data

show that none of them is perfect and each one has its own

pros and cons. However, all of the clustering methods use

the Euclidean distance as their similarity measure and

determining this distance in the following situations

imposes a high computational burden to them: facing with

high-dimensional inputs like text data (Jiang et al. 2018)

and genomic sequences (Pratas et al. 2016; Soni and

Ganatra 2012) encountering with large number of samples

(Lin et al. 2017) increasing the number of iterations for

learning the clusters.

To preserve the clustering performance as well as

diminishing the complexity, the researchers proposed a

two-stage clustering scheme which can be implemented via

parallel processing techniques. In the first stage, feature

space is segmented into some distinct subspaces by the

FEM method in a way that each subspace captures only one

cluster of data. In the second stage, the parameters

DBSCAN include Min-Pts and e, are tuned by the Gap-

Statistics method (Tibshirani et al. 2001) in a way that the

number of detected clusters by DBSCAN is confirmed by

the Gap-Statistics index. Afterward, the tuned DBSCANs

are executed in parallel over their corresponding subspaces.

The rest of this paper is organized as follows. Section 3

explains the proposed algorithm. Besides, Sect. 4 illustrates

the evaluation criteria, results and discusses the advantages

and limitations of the proposed method compared to the

counterparts. Finally, the paper is concluded in Sect. 5 and

an outline to the future work is presented.

3 Methods and Materials

In this part, the proposed distributed method termed as

FEM-DBSCAN is explained and then the selected datasets

are characterized in terms of number of samples and

dimensions. Finally, the evaluation criteria are introduced.

3.1 The Proposed Method

In the proposed method, the feature space is partitioned

into some subspaces by the FEM method, where we expect

to have a few adjacent clusters.

There is no guarantee that the density of the neighbor

clusters be uniform and equal. Then, we tuned the

parameters (Min-Pts and e) of DBSCAN using the Gap-

Statistic method. As far as Gap-Statistic index determines

the number of clusters in a dataset, the number of clusters

produced by DBSCAN on each subspace should meet the

Gap-Statistic index on the same subspace. Afterward, the

DBSCANs are applied to their regions in parallel and

categorize the whole data. The block diagram of the pro-

posed method is sketched in Fig. 1.

3.1.1 FEM

The FEM is a partitioning method which acts a bit similar

to Gaussian mixture model (Bouveyron and Brunet 2011).

This algorithm is based on the EM algorithm to which an

additional step is introduced, between the E and the M

steps. This additional step is named F-step, which aims to

compute the projection matrix U whose columns span the

discriminative latent space. Before explaining the steps,

some definitions are given as follows:
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Definition 1 Let {x1, …, xn} [ E are the independent

input samples, which are going to be clustered into K

homogeneous groups. The samples by the linear transfor-

mation of U is projected into a lower dimensional space

E [ Rp, called as latent space which is a more discrimi-

native subspace with the dimension of d B K – 1, where

K\ p. Let {y1, …, yn} [ Rp are the projected samples,

where each sample yi is assigned by a value zi-
[ {1, …, K}, where zi = k demonstrates that the sample yi
belongs to the kth cluster. The input samples (X [ E ) and

the projected samples (Y [ Rp) are linked by the linear

transformation of U, as described as follows:

Y ¼ UX þ e ð1Þ

where U is a p 9 d orthonormal matrix which satisfies the

following condition: UtU = Id. The p-dimensional noise

vector of e models the non-discriminative part of this

projection and obeys from a normal Gaussian function

w e�N 0 � pwð Þð Þ. In addition, in the latent space, X is

assumed, conditionally to Z = k, to be Gaussian:

XjZ ¼ K �N lK � pRKð Þ ð2Þ

where lK [ Rd and RK [ Rd 9 d are, respectively, the mean

vector and the covariance matrix of the kth cluster. Since

linear projection does not change the input distribution, the

distribution of projected samples yi obeys a Gaussian

function as described in Eq. (3),

YX�Z¼K �N U X � wð Þ ð3Þ

Thus the marginal distribution yi can be written in the

form of a Gaussian mixture model:

f ðyÞ ¼
XK

K¼1

pk£ y;mk � Skð Þ ð4Þ

where pk is the coefficient of the kth Gaussian function u(�;
mk, Sk) represented by the mean vector of mk ¼ Ulk and the

covariance matrix Sk = U
P

KU
t ? w. In addition, the

matrix W = [U, V], p 9 p is defined as an orthogonal

matrix (WtW = WWt = Ip), where the matrix V(p-d)*p is an

orthogonal complement of U. The noise covariance matrix

w satisfies the following conditions: VtwV = bIp - d and

UtwU = 0d.

As stated, the FEM algorithm has three steps:

• E-Step: Determining the conditional probabilities that

observations belong to the K Gaussian.

• F-Step: Estimating the orientation matrix U correspond-

ing to the conditional probabilities.

• M-Step: Estimating the parameters of GMM in the

latent space by maximizing the likelihood function.

What follows is the formulation of the FEM algorithm

at iteration q:

The E-Step determines the posterior probabilities t
ðqÞ
ik , in

which the observations belong to the Kth function using the

following update formulas (5 and 6):

t
ðqÞ
ik ¼ p̂ q�1ð Þ

k £ yi � ĥ
q�1ð Þ
k

� �
=
XK

l¼1

p̂ q�1ð Þ
l £ yi � ĥ

q�1ð Þ
l

� �
ð5Þ

ĥk ¼ l̂k � R̂k � b̂k � Û
n o

ð6Þ

As we mentioned, F-Step considers the estimated pos-

terior probability and iteratively estimates the directions of

linear transform U(q) into the latent space by maximizing

the Fisher’s criterion.

Fig. 1 An overview of the

proposed method
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Û
ðqÞ ¼ maxtrace UtSUð Þ�1

UtS
ðqÞ
B U

� �
ð7Þ

UtU ¼ Id ð8Þ

where S is the covariance matrix of the entire dataset and

S
ðqÞ
B is the between-class matrix, determined as follows:

S
ðqÞ
B ¼ 1

n

XK

k¼1

n
ðqÞ
k m

ðqÞ
k � y

� �
m

ðqÞ
k � y

� �t
ð9Þ

where

n
ðqÞ
k ¼

Xn

i¼1

t
ðqÞ
ik � mðqÞ

k ¼ 1=n
ðqÞ
k

Xn

i¼1

t
ðqÞ
ik yi ð10Þ

y ¼ 1=n
Xn

i¼1

yi ð11Þ

In the final step (M-Step), the parameters of GMM are

estimated in the latent subspace by maximizing the con-

ditional expectation of the log-likelihood function:

Q hð Þ ¼ � 1

2

XK

k¼1

n
ðqÞ
k �2 log

�
pk þ trace

X�1

k

Û
ðqÞt

C
ðqÞ
k Û

ðqÞ
 !"

þ log
X

k
���

���
� �

þ p� dð Þ log bkð Þ

þ
trace C

ðqÞ
k

� �
�
Pd

j¼1û
ðqÞt
j C

ðqÞ
k û

ðqÞ
j

bk
þ p log 2pð Þ

3
5

ð12Þ

where C
ðqÞ
k ¼ 1

n
ðqÞ
k

Pn
i¼1t

ðqÞ
ik yi � m

ðqÞ
k

� �
yi � m

ðqÞ
k

� �t
is the

covariance matrix of the kth function and û
ðqÞ
j is the jth

column vector of Û
ðqÞ � nðqÞk ¼

Pn
i¼1t

ðqÞ
ik . Maximizing Q

conditionally to Û
ðqÞ

leads to the following formula for

updating the mixture parameters of the model DLMP
k
�bk½ �.

p̂ðqÞk ¼ n
ðqÞ
k

n
ð13Þ

l̂ðqÞk ¼ 1

n
ðqÞ
k

Xn

i¼1

t
ðqÞ
ik Û

ðqÞt
yi ð14Þ

XðqÞ

k

Û
ðqÞt

CkÛ
ðqÞ ð15Þ

b̂
ðqÞ
k ¼

trace Ckð Þ �
Pd

j¼1û
ðqÞt
j Ckû

ðqÞ
j

p� d
ð16Þ

In this section, the feature space is adaptively segmented

into subspaces that no cluster is shared between adjacent

regions. In this regard, FEM is applied at first to both and

decease the dimensionality of input samples as well as

locating the clusters as far as possible. Hence, the possi-

bility of getting a better clustering performance is increased

in the projected space. After applying FEM to input space,

some subspaces are created in which we expect to have

different groups of adjacent samples in each subspace.

Actually, by applying FEM, input samples are projected

into a more separable space, in which the clustering per-

formance can be improved. According to the characteristics

of data, the number of subfields is specified. Figure 2

shows a famous dataset that is projected into four sub-

spaces by FEM.

3.1.2 Gap-Statistic

Estimating the proper number of clusters in a dataset is a

challenging issue. The Gap statistic is a standard method

for determining the number of clusters in a set of data. Gap

statistics is proposed (Tibshirani et al. 2001) to determine

the proper number of clusters in a multidimensional dataset

{xij}, i = 1, 2, ..., n, j = 1, 2, ..., p, where n is the number of

samples and p in the number of attributes. The aim is to

find the number of clusters (k) C1, C2, ...,Ck, where Cr is the

indexes of samples in the rth cluster (nr = |Cr|). Let dij be

the Euclidean distance between two samples i and j.

Summation of the pairwise distances Dr for all points in the

cluster r is:

Dr ¼
X

ij=2Cr

dij ð17Þ

And

Wk ¼
Xk

r¼1

1

2nr
Dr ð18Þ

where Wk is the summation of within-cluster of all clusters.

To calculate the Gap index, the difference between the

expected value of log Wk�ð Þ, under the reference distribu-

tion, and the log(Wk) is determined as follows:

GapnðkÞ ¼ E�
n log W�

k

� �
� log Wkð Þ ð19Þ

The suitable number of clusters is the smallest k that

satisfies the following relation.

GapnðkÞ�Gapn k þ 1ð Þ � skþ1 ð20Þ

where sk is the simulation error determined by the standard

deviation sd(k). The expected value E�
n log W�

k

� �
of within-

dispersion is determined by the following equation:

E�
n log W�

k

� �
¼ 1

B

X
log W�

kb

� �
ð21Þ

where W�
kb is determined by clustering the B reference

samples. If the data has just one dimension, the reference

Iranian Journal of Science and Technology, Transactions of Electrical Engineering

123

Author's personal copy



distribution is selected as a uniform distribution. For

multidimensional data, p separate uniform distributions are

generated and for each dimension, the corresponding

generated attribute is drawn from the corresponding

distribution.

3.1.3 Estimation of e in Each Subspace

Considering the Gap statistics results, we want to tune the

parameters of Min-Pts and e for each subspace. For this

purpose, we adopt the method proposed in Rahmah and

Sitanggang (2016), in which the distance from each point

to its kth nearest neighbor (call it as K-dist) is determined

and then sort all points according to their K-dist values. In

the K-dist graph, the sudden gradient changes determine

the value of e. Figure 12 shows graph for tune of e of

DBSCAN.

The algorithm begins with calculating the Euclidean

distance of all pairs of samples by the dist function.

Therefore, a distance matrix is constructed, which is then

normalized in order to facilitate the search for the kth

nearest neighbors on each line of this matrix. For each

sample, the distances are arranged in ascending order to

find the kth nearest neighbor. The K-dist values are plotted

and for each sudden change in the slope of the curve, the

corresponding value of e is determined. Afterward, we

execute DBSCAN on each subspace with respect to the

corresponding Min-Pts and e. The following is the sug-

gested pseudo-code:

Fig. 2 Applying FEM to t4.8k dataset is illustrated
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Pseudo-code of the proposed algorithm

Input: D, K

Output: set of clusters

1: begin

2: for each dataset D do

3: call library (FEM)

4: data(D)

5: r/fem (D [… …], K)

6: // r shows numbers of subspace

7: end for

8: while there is subspace do

9: // Determine the number of clusters in each subspace with Gap

Statistic

10: Clustering of any space taking into account the value of k in the

range of 1 to kMAX

11: Calculate the amount of in-cluster differences for each

performance and place it in the WK variable

12: Generate B data sets from each subspace, somehow having a

uniform random distribution

13: Clustering of each of these B datasets for different values of k (in
the range of 1 to kMAX).

14: Calculate the amount of in-cluster differences for each

performance and place it in the Wkb variable

15: Calculate the gap statistic as the difference of the observed values

of WK from their expected values under the assumption of zero Wkb

16: Calculate the standard deviation of the statistic: Gap(k) = 1/
B(sum(log(Wkb) - log(WK)))

17: Select the optimal number of clusters with a minimum value of k

such that Gap(k)[= Gap(k ? 1) - sK?1

18: end while

19: find suitable e for each level of density in subspace

20: for any subspace have size ‘‘n’’ do

21: for i

22: for j = 1 to n

23: D (i, j) / find the distance to (xi, xj)

24: Find minimum values of distances to nearest k

25: end for

26: end for

27: end for

28: Sort distances ascending and plot to find each value

29: e corresponds to critical change in curves

30: end

As mentioned in the proposed method, FEM is first used

to determine each subspace. The feature space is adaptively

segmented into subspaces that no cluster is shared between

adjacent regions. In this method, FEM is applied at first to

both decease the dimensionality of input samples as well as

locating the clusters as far as possible. Hence, the possi-

bility of getting a better clustering performance is increased

in the projected space. After applying FEM to input space,

some subspaces are created in which we expect to have a

different groups of adjacent samples in each subspace.

Then, the Gap Statistic is used to determine the number of

optimal clusters in each subspace. In Gap statistics, the

amount of in-cluster differences is done for each of the

performances and this value is placed in the variable WK.

Number B datasets are generated from each subspace in

such a way that they have a uniform random distribution.

Each of these B datasets is clustered for different values of

k (in the range of 1 to Kmax). Then, the amount of in-cluster

differences for each of the performances is calculated and

the Wkb variable is placed. The gap statistic is then calcu-

lated as the difference of the observed values of WK from

their expected values under the assumption of zero Wkb,

and then the standard deviation of the statistic is obtained.

The optimal number of clusters is obtained as the minimum

value of k so Gap(k)[= Gap(k ? 1) - sK?1. Considering

the Gap statistics results, we want to tune the parameters of

Min-Pts and e for each subspace. For this purpose, in which

the distance from each point to its kth nearest neighbor

(call it as K-dist) is determined and then sort all points

according to their K-dist values. In the K-dist graph, the

sudden gradient changes determine the value of e. Fig-
ure 10 shows graph for tune of e of DBSCAN. The algo-

rithm begins with calculating the Euclidean distance of all

pairs of samples by the dist function. Therefore, a distance

matrix is constructed, which is then normalized in order to

facilitate the search for the kth nearest neighbors on each

line of this matrix. For each sample, the distances are

arranged in ascending order to find the kth nearest neigh-

bor. The K-dist values are plotted and for each sudden

change in the slope of the curve, the corresponding value of

e is determined. Afterward, we execute DBSCAN on each

subspace with respect to the corresponding Min-Pts and e.

3.2 Datasets

To evaluate the proposed method, several datasets were

adopted, some of which have label and some of others have

no label. The datasets are expressed in terms of number of

samples and number of dimensions. Since labeling is a

costly and time-consuming process, most of big datasets

are unlabeled, though for medium size datasets, labeled

datasets are used to measure. Table 1 shows the charac-

teristics of the deployed datasets (Fränti and Sieranoja

2018) in this research.

4 Evaluation

Labeled datasets are used to assess the proposed clustering

method in terms of purity, which measures how many

samples in a cluster have the same label. The clustering
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performance for unlabeled datasets is assessed under Fisher

value (Duda and Hart 1973), Davies–Bouldin (DB) (Davies

and Bouldin 1979) and Silhouette value (Rousseeuw 1987).

What follows is the explanation of these criteria.

One of the simplest external evaluation indicators in

clustering is the Purity criterion, which measures the per-

centage of correspondence between clustering tags and

actual tags. In this case, the label of each cluster matches

the actual label of the category that has the most sub-

scriptions, and the number of points in the cluster that are

classified in the correct category are counted. The ratio of

this number to the total number of points makes up the

purity criterion. In other words, purity criterion is the

percent of the total number of samples that are correctly

classified in the unit range [0,1]. A value close to 1 indi-

cates a higher accuracy of data clustering and is determined

as follows:

Purity ¼
Xk

r¼1

nr
n
P Srð Þ ð22Þ

where P(Sr) examines the accuracy of the rth cluster and nr
denotes the number of samples in the rth cluster and n the

total number of samples. In this respect, we consider the

maximum distribution of samples for a cluster.

Depending on how the purity criterion is calculated, it is

clear that the maximum value for it will be 1, and this

happens when the labels obtained from the clustering

match exactly with the actual labels. Also, if no cluster tag

matches the actual tag, this index becomes zero.

Fisher value for a clustering method indicates that how

much the clusters are concentrated around their means

simultaneous with how much the clusters are far from each

other. In this regard, each cluster is considered as a class

and by taking the trace of between-class scatter matrix

(trace(Sb)) divides by the trace of the within class scatter

matrix (trace(Sw)), the Fisher value is determined. The

between and within class scatter matrixes are defined

below:

Sb ¼
1

N

Xc

i¼1

LiSbi ð23Þ

Sbi ¼ x� lið Þ x� lið ÞT ð24Þ

where Li and li are the number of samples and the mean of

the ith cluster, respectively. In addition, Sw is the sum-

mation of all within class scatter matrixes and Swi is the

within class scatter matrix of the ith cluster.

Sw ¼ 1

N

Xc

i¼1

Swi ð25Þ

Swi ¼
X

j2li
xj � li
� �

xj � li
� �T ð26Þ

F value ¼ trace SBð Þ
trace SWð Þ ð27Þ

DB measures the status of two by two clusters and for

each cluster, the worst value is selected. In fact, it does not

depend on the number of clusters or the clustering algo-

rithm and this index calculates the average of the maxi-

mum internal dispersion to dispersion ratio between

clusters. The final value of this index is an average over the

worst values of all clusters. The similarity measure Rij for

the ith, jth clusters is determined as follows:

Table 1 Characteristics of the

deployed datasets
Dataset name Number of data Number of dimensions Number of clusters

Unlabeled datasets

T4.8k 8000 2 6

Brich2 11,000 2 100

Flame 240 2 2

Labeled datasets

R15 600 3 15

D31 3100 2 31

Unbalance 6500 2 8

JSI 600 3 8

Yeast 1484 8 10

Breast 699 9 2

Iris 150 4 3

Wine 178 13 3

Glass 240 9 7

Diabetes 768 8 2

Bupa 345 5 2
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Rij ¼
si þ sj
Dij

ð28Þ

where Si and Sj are the variances of the ith, jth clusters,

respectively, and Dij is the distance between their means.

The worst case for the ith cluster maximizes the Rijover the

clusters. The DB index is determined as follows:

DBi ¼ j
MaxRij;DB ¼ 1

C

XC

i¼1

DBi ð29Þ

where C is the number of clusters. Silhouette value is

determined for each sample and measures its belonging-

ness to its cluster compared to other clusters. This index is

defined below:

SðiÞ ¼ bðiÞ � aðiÞ
max aðiÞ; b ðiÞ½ � ð30Þ

where a(i) is average distance of simple i with the other

samples in the same cluster and b(i) is the minimum dis-

tance of sample i with all samples in other clusters. S(i) can

be in the interval of [-1, 1], where negative value implies

that this sample is not belonged to its cluster and vice

versa. Positive value in the summation of silhouette values

of samples within each cluster shows its validity while if

this summation be negative, it shows that this cluster

should be removed and its samples should be assigned to

its neighbor clusters.

F-measure is an external evaluation criterion for mea-

suring accuracy of clustering methods. This criterion

depends on two factors: precision and recall. F-score is

computed by weighted mean of recall and precision.

Recall x; yð Þ ¼ Nxy=Nx ð31Þ

Precision x; yð Þ ¼ Nxy=Ny ð32Þ

where Ny is element of cluster y and Nx is number of ele-

ment of class x for class x and cluster y, Nxy is numbers of

elements of class x in cluster y. Following equation cal-

culates F-measure for class x and cluster y as follows:

F x; yð Þ ¼
2� Recall x; yð Þ � Precision x; yð Þ

�

Precision x; yð Þ þ Recall x; yð Þð Þ ð33Þ

Calculated F-measure is a result of weighted average of

Precision and Recall for each class x, as shown in Eq. (34).

FC ¼
P

i ij j � FðiÞð ÞP
i ij j

ð34Þ

where |i| is the size of class i. This criterion is one at best

and zero at worst.

Another method of evaluating clustering is the accuracy

criterion, which measures the degree of accuracy. In this

criterion, given that C = {C1, …, Ck} is a set of clusters,

and ai is equal to number of data that are in their correct

clustering (Ci) and the dataset has n objects and k is the

number of clusters, then accuracy is measured by Eq. (35):

AC ¼
Pk

i¼1 ai
n

ð35Þ

When labeled data presented through clustering meth-

ods, two methods of accuracy and F-measure lend them-

selves to use. Note that, data cannot be used if they are

unlabeled.

5 Experimental Results and Discussions

In this section, results of our method are presented and

compared to state-of-the-art methods (OPTICS and

STDBSCAN and PDBSCAN), over the described datasets

in terms of the mentioned metrics. Afterward, the robust-

ness against noise of the proposed method is determined

and finally the computational complexity of the compared

methods is compared.

5.1 Clustering Results

In this part, Datasets name and the number of subspaces

created by FEM, the number of clusters estimated by

Gap statistics, the proper neighborhood radius (e), and

Minpts in each subspace are presented in Table 2.

The results of applying the proposed method and the

compared ones over the datasets considered in terms of

purity and F-measure and accuracy (for the labeled

Table 2 Estimated the number of subspaces, number of clusters and

the hyper-parameters of DBSCAN for different datasets

Dataset

name

The number of

subspaces

created by

FEM

# of

clusters by

Gap

statistics

Neighborhood

radius (e)
Minpts

T4.8k 4 8 10 15

Brich2 4 5 1400 15

Flame 3 4 3200 15

R15 4 9 0.5 15

D31 3 14 1400 15

Unbalance 4 8 1 15

JSI 4 3 0.5 15

Yeast 4 1 0.5 15

Breast 1 2 0.5 15

Iris 1 2 0.5 15

Wine 1 2 0.5 15

Glass 1 2 0.5 15

Diabetes 1 3 0.5 15

Bupa 1 3 0.5 15
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datasets) and the three other metrics (for the unlabeled

datasets) are shown in Figs. 3, 4, 5, 6, 7, and 8. The cri-

terion of ‘‘accuracy’’ is calculated on the basis of per-

centage. Note that the best parameter is set through the

cross-validation for each dataset.

As it can be seen in Figs. 3, 4, and 5 the proposed

method provides a higher purity and F-measure than the

other compared methods on the labeled datasets. Similarly,

in Figs. 6 and 7, the proposed method has outperformed the

rivals in terms of Fisher value and Davies–Bouldin index,

while the results in terms of Silhouette value in Fig. 8 do

not show any significant superiority.

5.2 Robustness Against Noise

It is known that during each data recording, some

undesired signals are added due to several reasons like

the noise of environment, power line and noise of the

apparatus. Noises can be added, multiplied or nonlinearly

invade the measured signals and corrupt its information.

It is obvious that noise can adversely affect the results of

data analysis. Since additive noise is the most common

noise, here the researchers added noise to the samples

and evaluate the results under the noisy condition. In the

labeled datasets, noise can be simulated by randomly

change the label of a certain ratio of the whole popu-

lation. Here, a dataset selected and after inserting the

noise, the samples are depicted in Fig. 9 (left fig-

ure shows the original samples and right figure shows

the noisy samples).
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Applying FEM to the noisy samples in Fig. 9 is illus-

trated in Fig. 10. We have estimated the number of sub-

spaces by the Gap statistics as shown in Fig. 11.

The proper value of e is determined by the maximum

slope change in Fig. 12. According to this diagram, this

parameter is set to e = 0.8 with MinPts = 15, for each

subspaces. We show the reachability plot of the proposed

method in presence of noise in Fig. 13.

The researchers evaluated the proposed method in two

labeled datasets in presence of noise in terms of purity and

F-measure and accuracy and the results are illustrated in

Table 3.

5.3 Computational Complexity

In this proposed method, sub-space splitting is performed

by FEM, which is optimized by the EM algorithm. EM, is

not very easy. Objects are not assigned to a single space.

First, the complexity of FEM is calculated in each

subspace:

E zn½ � ¼ M�1WT xn � xð Þ ð36Þ

E znz
T
n

� �
¼ r2M�1 þWTE zn½ � xn � xð Þ ð37Þ

Wnew ¼
XN

n¼1

xn � xð ÞE zn½ �T
" #

XN

n¼1

E znz
T
n

� �
" #�1

ð38Þ

o 2
new ¼ 1

ND

XN

n¼1

xn � x2 � 2E zn½ �TWT
new xn � xð Þ

	

þ Tr E znz
T
n

� �
WT

newWnew

� �
g ð39Þ

Here M is an M 9 M matrix, W is a D 9 M matrix and

(xn - x) is vector with D 9 1 dimensions. Given the

Fig. 9 Selected data to add noise in the proposed method

Fig. 10 FEM methods in data with noise in the proposed method

Fig. 11 Instead of number of subspaces

Fig. 12 Determination of e per subspace in noise dataset

Fig. 13 Reachability plot in the proposed method with noise (e = 0.8,

MinPts = 15)
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Table 3 Compare the results of noisy datasets

Dataset name D31 R15

Number of data 3100 600

Data status Labeled Labeled

Subspace number without noise 4 4

Subspace number with noise 7 9

Estimating the number of clusters in any subspace with noise Subspace#1 14 Subspace#1 2

Subspace#2 12 Subspace#2 9

Subspace#3 7 Subspace#3 2

Subspace#4 4 Subspace#4 8

Subspace#5 13 Subspace#5 2

Subspace#6 10 Subspace#6 3

Subspace#7 7

Subspace#7 7 Subspace#8 9

Subspace#9 2

Determine the optimal neighborhood radius (e) 1 0.5

Determine the minimum points in a cluster (minpts) 15 15

Determine the minimum distance to merge two adjacent cluster (eps_cl) Subspace#1 0.65 Subspace#1 0.5

Subspace#2 0.66 Subspace#2 0.5

Subspace#3 0.67 Subspace#3 0.5

Subspace#4 0.5

Subspace#4 0.71 Subspace#5 0.5

Subspace#5 0.70 Subspace#6 0.5

Subspace#6 0.66 Subspace#7 0.5

Subspace#8 0.5

Subspace#7 0.65 Subspace#9 0.5

Purity in without noise Subspace#1 0.989154 Subspace#1 1

Subspace#2 0.9817792 Subspace#2 0.9914286

Subspace#3 0.9845475 Subspace#3 1

Subspace#4 0.9778393 Subspace#4 1

Purity in with noise Subspace#1 0.979344 Subspace#1 1

Subspace#2 0.9584 Subspace#2 0.96951

Subspace#3 0.987434 Subspace#3 1

Subspace#4 1 Subspace#4 1

Subspace#5 1

Subspace#5 0.98213 Subspace#6 1

Subspace#6 1 Subspace#7 0.9452

Subspace#7 1 Subspace#8 1

Subspace#9 0.96547

F-measure in without noise Subspace#1 0.0951 Subspace#1 0.067

Subspace#2 0.0932 Subspace#2 0.069

Subspace#3 0.0921 Subspace#3 0.062

Subspace#4 0.0951 Subspace#4 0.070

Subspace#5 0.073

Subspace#5 0.0958 Subspace#6 0.067

Subspace#6 0.0961 Subspace#7 0.084

Subspace#7 0.0902 Subspace#8 0.069

Subspace#9 0.078
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number of dimensions in FEM, there is a matrix inversion

step that we must invert the covariance matrix. Therefore,

the researchers bring the number of dimensions into the

complexity of the algorithm. If we presume that the EM

algorithm uses linear algebra, which it does, then its

complexity should be O(p 9 i 9 n 9 D), where p is

number of points and i is the number of iterations and n is

the number of parameters and D is number of dimensions.

Therefore, the complexity of FEM is determined as

O(p 9 i 9 n 9 D). The complexity of Gap statistics is

determined by O(p 9 k 9 I), where p is number of points,

k is number of clusters and I is number of iterations. After

calculating the number of clusters per subspace, we cal-

culate the e for each subspace. The complexity of this part

is determined O(nlogn). The algorithm DBSCAN on each

subspace is O(nlogn), where n is the number of samples in

that subspace. Hence, the total number of operations in the

proposed methods is determined by:

O p� i� n� Dð Þ þ O p� k � Ið Þ þ O n log nð Þ
þ O K � n log nð Þ
¼ O n log nð Þ ð40Þ

Table 3 (continued)

Dataset name D31 R15

F-measure in with noise Subspace#1 0.0876 Subspace#1 0.060

Subspace#2 0.0865 Subspace#2 0.062

Subspace#3 0.0914 Subspace#3 0.051

Subspace#4 0.0950 Subspace#4 0.059

Subspace#5 0.072

Subspace#5 0.0958 Subspace#6 0.060

Subspace#6 0.0987 Subspace#7 0.081

Subspace#7 0.0901 Subspace#8 0.071

Subspace#9 0.053

Accuracy in without noise Subspace#1 93% Subspace#1 97%

Subspace#2 92% Subspace#2 94%

Subspace#3 94% Subspace#3 93%

Subspace#4 90% Subspace#4 92%

Subspace#5 91%

Subspace#5 98% Subspace#6 90%

Subspace#6 92% Subspace#7 94%

Subspace#7 91% Subspace#8 92%

Subspace#9 96%

Accuracy in with noise Subspace#1 88% Subspace#1 93%

Subspace#2 90% Subspace#2 90%

Subspace#3 91% Subspace#3 90%

Subspace#4 85% Subspace#4 87%

Subspace#5 84%

Subspace#5 84% Subspace#6 89%

Subspace#6 86.6% Subspace#7 94%

Subspace#7 90.1% Subspace#8 89%

Subspace#9 90%

Table 4 Comparing the

methods
Name of methods DBSCAN OPTICS DENCLUE Proposed method

Complexity O(n2) O(nlogn) O(log |D|) O(nlogn)

Varied density type No No Yes Yes

Type of data Spatial data with noise Spatial data with noise Low data Big data

Shape of cluster Arbitrary Arbitrary Arbitrary Arbitrary

Noise handling Not very well Not very well Very well Very well
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5.4 Comparative Study of Methods

In this section, compared the proposed method was com-

pared to DBSCAN and OPTICS and DENCLUE in terms

of complexity, noise handling, ability to form clusters with

different shapes and their ability to handle big datasets.

These algorithms were selected because they were all

density-based methods. Table 4 illustrates the comparison

results.

6 Conclusion

In this paper, an extension of DBSCAN was proposed

which was equipped with a FEM algorithm to diminish the

input dimension and project the input samples into more

separable subspaces. Afterward, the parameters of

DBSCAN were tuned according to the Gap statistics dia-

gram on each subspace. Since each DBSCAN was exe-

cuted on a portion of data (subspace), these algorithms can

be run in parallel and the computational complexity of

DBSCAN on each subspace is much lower than executing

it on the whole data. The proposed method outperforms to

OPTICS and DBSCAN, due to OPTICS clustering meth-

ods, because DBSCAN uses certain values for the epsilon

(radius) and MinPts, which are not necessarily optimal for

the whole space. In addition, although OPTICS can detect

clusters with different densities, the clusters cannot be

explicitly represented and also suffers a high computational

complexity. For the future work, it is possible to extend

FEM-DBSCAN to stream data in a real-time manner.
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