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ABSTRACT
A catalyst-free and solvent-free three-component tandem strategy for syn-
thesizing tetrahydrobenzo[b]pyran scaffolds through Knoevenagel–Michael
cyclocondensation is reported using visible light irradiation as a green pro-
moter at room temperature. The prominent benefits of the existing proto-
col are catalyst-free, solvent-free, using commercially accessible,
inexpensive preliminary substances, operational simplicity, energy-effective-
ness, great yields, high atom-economy, thus meeting some features of sus-
tainability and green chemistry.
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Introduction

Over the previous years by increased demand for sustainable, environmentally friendly, and
effective synthesis approaches in green chemistry, catalyst-free and solvent-free for preparing the
organic mixtures has arisen as a key approach considering their low cost, simple workup,
decreased pollution, and preventing the catalysts and solvent influence on sensitive substrates. In
recent years, the development of the use of visible light irradiation due to its low cost, abundant
reserves of this type of energy and its renewable capability as a powerful energy source in the
environmentally friendly synthesis of organic compounds has attracted the attention of green
chemists.1–3 Generally compact fluorescent lights (CFLs) and light emitting diodes (LEDs) use as
a visible light source for different transformations.

Pyran derivatives with various pharmacological features (Figure 1) like Chk1 kinase inhibitory
activity,4 anticancer,5 spamolytic,6 antihypertensive, hepatoprotective, cardiotonic,7 vasodilator,8

anti-leukemic,9,10 emetic,11 anti-anaphylactic activities,12 diuretic13 and anti-alzheimer.14

There are numerous approaches for synthesizing these compounds using various catalysts such
as CaHPO4,

15 SiO2NPs,
16 ethylenediamine diacetate,17 SBPPSP,18 DBSA,19 NH4Al(SO4)2�12H2O,

20

NH4H2PO4/Al2O3,
21 ACoPc-MNPs,22 ZnONPs,23 Fe3O4@SiO2-imid-PMA,24 NiFe2O4@SiO2–

H3PW12O40,
25 theophylline,26 triethanolamine,27 NaN3,

28 Fe3O4@SiO2@TiO2,
29 MgFe2O4 nano-

particles30 and trichloroisocyanuric acid.31 It was shown that these reported procedures lead to in
numerous cases. Though, some of synthetic policies contain also restrictions regarding the expen-
sive reagents, metal catalyst, environmental hazard, long reaction time, harsh reaction circumstan-
ces, monotonous workup process, unacceptable yield, and using the homogeneous catalyst that is
separated problematically from the reaction mixture.

Nevertheless, developing green, mild and modest measures is the leading objective of green
chemistry to remove the usage and creation of hazardous materials. Owing to the above-men-
tioned difficulties and due to our current severe attention on environmentally benign
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protocols,32–34 the search for eco-safe, simple and effective strategies capable of promoting
organic reactions under green circumstances have attracted a huge deal of interest in producing
tetrahydrobenzo[b]pyran scaffolds. Hence, here catalyst and solvent free synthesis of tetrahydro-
benzo[b]pyran scaffolds using aryl aldehyde derivatives (1, 1.0mmol), malononitrile (2, 1.0mmol)
and dimedone (3, 1.0mmol) are reported in the presence of CFL (22W) irradiation as a green
promoting media at room temperature via tandem Knoevenagel–Michael cyclocondensation pro-
vided the anticipated products in outstanding yields and short reaction times which might solve
some cost problems in industry.

Experimental

General

Utilizing an Electro thermal 9100 device, all compounds’ melting points were found. Moreover,
recording nuclear magnetic resonance, 1HNMR spectra were carried out on a Bruker DRX-400
and Bruker DRX-300 Avance tool with CDCl3 as solvent. All reagents were bought from Acros,
Merck, and Fluka chemical companies and were utilized with no additional purification.

The overall process of preparing (4a–t)
A mixture of aryl aldehyde derivatives (1, 1.0mmol), malononitrile (2, 1.0mmol) and dimedone
(3, 1.0mmol) was reacted in the presence of CFL (22W) irradiation as a green promoter under
catalyst and solvent free conditions at room temperature (Scheme 1). The reaction progress was
monitored by TLC utilizing ethyl acetate–n-hexane (1:3) as an eluent. After completing the reac-
tion, the achieved solid was filtered, rinsed with water and the crude solid was recrystallized from
ethanol to provide the pure material without requiring more purification. Comparing the spectro-
scopic information, the products were categorized (1HNMR).

Scheme 2 shows the suggested mechanism for synthesizing tetrahydrobenzo[b]pyran scaffolds.
The reaction was encouraged by creating an inclusion the radical intermediate ylidenemalononi-
trile (cyano olefin) B was readily created in situ from Knoevenagel condensation between

Figure 1. Some medicinally important compounds containing pyran motifs.
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arylaldehyde 1 and active methylene compound 2 in the presence of visible light irradiation. This
can be demonstrated by the arylaldehydes’ steric influences on the reaction effectiveness (Table
3). Intermediate B absorbs one hydrogen from methylene malononitrile, thereby converting malo-
nonitrile to a radical malononitrile, consequently, it consists of intermediate C. Then, malononi-
trile radical absorbs one hydrogen from form 3 and converts it to form intermediate E.

Scheme 1. Synthesis of tetrahydrobenzo[b]pyran scaffolds.

Scheme 2. Proposed mechanism for synthesizing tetrahydrobenzo[b]pyran scaffolds.
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Intermediate E attacks to intermediate C as Michael acceptor to give F that after tautomerizing
and cyclizing affords the target products 4.

2-Amino-4-(3-methylphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4Hchromene-3-carbonitrile
(4a).

Yield: 93%; M.p. 199–201 �C; 1H NMR (400MHz, CDCl3) 1.06 (3H, s, CH3), 1.13 (3H, s,
CH3), 2.23 (2H, d, J¼ 5.6Hz, CH2), 2.31 (3H, s, CH3), 2.46 (2H, s, CH2), 4.38 (1H, s, CHAr),
4.52 (2H, s, NH2), 7.09–7.15 (3H, m, ArH), 7.28 (1H, s, ArH).

2-Amino-4-(4-nitrophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4Hchromene-3-carbonitrile
(4h).

Yield: 92%; M.p. 178–180 �C; 1H NMR (300MHz, CDCl3) 1.07 (3H, s, CH3), 1.16 (3H, s,
CH3), 2.30 (2H, d, J¼ 14.0Hz, CH2), 2.52 (2H, s, CH2), 4.55 (1H, s, CHAr), 4.68 (2H, s, NH2),
7.45 (2H, d, J¼ 11.6Hz, ArH), 8.20 (2H, d, J¼ 11.6Hz, ArH).

2-Amino-4-(2,3-dimethoxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4Hchromene-3-carboni-
trile (4k).

Yield: 91%; M.p. 216–218 �C; 1H NMR (300MHz, CDCl3) 1.10 (3H, s, CH3), 1.14 (3H, s,
CH3), 2.25 (2H, s, CH2), 2.47 (2H, s, CH2), 3.77 (3H, s, OCH3), 3.83 (3H, s, OCH3), 4.47 (2H, s,
NH2), 4.73 (1H, s, CHAr), 6.68-6.84 (3H, m, ArH).

Results and discussion

Initially, the reaction between benzaldehyde (1mmol), malononitrile (1mmol) and dimedone
(1mmol) was studied in various solvents under catalyst-free circumstances in the presence of
compact florescent lamp (CFL) (22W) irradiation at room temperature and the outcomes are
provided in Table 1. Based on Table 1, only a small quantity of products was found in H2O,
EtOH, H2O/EtOH (1:1), CH3CN, MeOH, DCM, DMSO, THF, CHCl3, DMF and EtOAc. A great
enhancement was found under solvent-free conditions (Table 1, entry 4). An outstanding yield of
91% was created by using of CFL (22W) irradiation with no further catalyst under solvent-free
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circumstances for 15min (Table 1, entry 4). Also, the optimized conditions were determined by
varying the intensities of CFL (18, 20, 22, 23 and 32W) irradiation. Based on Table 2, the best
outcomes were found in the presence of compact florescent lamp (CFL) (22W) irradiation (Table
2, entry 3). As observed in Table 3 and Scheme 1, it was indicated that this technique can work
with various substrates.

Comparison of the catalytic capacity of a number of catalysts referred to in the present paper
for the production of tetrahydrobenzo[b]pyran scaffolds has been shown in Table 4.

Conclusion

In conclusion, we revealed a catalyst free and solvent free, green, and rapid preparation of tetra-
hydrobenzo[b]pyran—a biologically significant scaffold—using visible light irradiation as a green

Table 1. Optimization of the solvent on the synthesis of 4f a.

Entry Solvent (3mL) Time (min) Isolated yields (%)

1 H2O 15 78
2 EtOH 15 72
3 H2O/EtOH (1:1) 15 75
4 Solvent free 15 91
5 CH3CN 45 53
6 MeOH 20 67
7 DCM 60 12
8 DMSO 30 41
9 THF 45 27
10 CHCl3 60 16
11 DMF 40 31
12 EtOAc 35 28
a Reaction conditions: benzaldehyde (1mmol), malononitrile (1mmol) and dimedone (1mmol) in the presence of CFL (22W)
irradiation under catalyst-free circumstances at rt.

Table 2. Optimization of the CFL on the synthesis of 4f a.

Entry Reaction conditions Time (min) Isolated Yields (%)

1 CFL (18W) 15 83
2 CFL (20W) 15 88
3 CFL (22W) 15 91
4 CFL (23W) 15 91
5 CFL (32W) 15 91
a Reaction conditions: benzaldehyde (1mmol), malononitrile (1mmol) and dimedone (1mmol) in the presence of CFL irradiation
under catalyst and solvent free conditions at rt.
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Table 3. Catalyst and solvent free synthesis of tetrahydrobenzo[b]pyran scaffolds.
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and low-cost promoter at room temperature based on green chemistry principles. Highlights of
the current practice are the application of non-hazardous reaction circumstances, catalyst-free,
solvent-free, operational simplicity, use of inexpensive initiating substances, isolation of pure
product via easy filtration thus preventing the requirement for column chromatography, metal-
free, excellent yields, time-saving aspects of the reaction, one key characteristic of the existing
work is to use CFL irradiation as a green and a low-cost promoting media sufficiently remarking
the rising potential of CFL irradiation in organic synthesis.
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